For citation:
Bessonov L. V., Kirillova I. V., Falkovich A. S., Ivanov D. V., Dol A. V., Kossovich L. Y. The “Planning – Modelling – Prediction” methodology for preoperative planning in trauma orthopaedics. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2024, vol. 24, iss. 3, pp. 359-380. DOI: 10.18500/1816-9791-2024-24-3-359-380, EDN: IQBZWJ
The “Planning – Modelling – Prediction” methodology for preoperative planning in trauma orthopaedics
Preoperative planning of surgical treatment is an important stage of preparation for surgical treatment in traumatology and orthopaedics, which makes it possible to emphasise the peculiarities of the clinical case, prevent possible problems during surgery and reduce the risks of postoperative complications. The leading method of diagnostics for further planning of surgical treatment nowadays is radiological studies, primarily radiography and computed tomography. The results of radiological studies allow a sufficiently qualitative assessment of the zone of interest, planning of the required degree of correction and placement of fixing metal structures and endoprostheses. At the same time, when planning, the doctor relies mostly on the knowledge of the norms of anatomical relations and structures. And in the case of a multitude of possible treatment options, the doctor relies on his or her own medical experience to make a choice. This article presents a developed generalising methodology of preoperative planning in traumatology-orthopaedics, which includes biomechanical analysis and methods of accumulation and processing of quantitative data of clinical cases along with the usual methods of preoperative planning for doctors. The methodology brings together into a single system the criteria for evaluating the success of treatment by applying three classes of criteria: geometric (anatomical), biomechanical and clinical. The methodology allows the physician to perform biomechanical modelling of the proposed treatment options and quantitatively evaluate them on the basis of comparison of stress-strain states arising in the «bone-implant» system as a result of each of the planned options. The methodology allows to determine successful treatment options and to predict changes in the patient's quality of life after treatment. The presented methodology includes a mechanism for accumulation of quantitative data on clinical cases and quality control of the used biomechanical models.
- Langella F., Villafane J., Damilano M., Cecchinato R., Pejrona M., Ismael M., Berjano P. Predictive accuracy of surgimap surgical planning for sagittal imbalance: A cohort study. SPINE, 2017, vol. 42, iss. 22, pp. 1297–1304. https://doi.org/10.1097/BRS.0000000000002230
- Ivanov D. V., Falkovich A. S., Donnik A. M., Polienko A. V., Olenko E. S., Krutko A. V. Generalization of the relationships between sagittal balance geometric parameters. Russian Journal of Biomechanics, 2022, vol. 26, iss. 1, pp. 5–20. https://doi.org/10.15593/RJBiomech/2022.1.01, EDN: MXLJER
- Ivanov D. V. Biomechanical support for the physician’s decision when choosing a treatment option based on quantitative success criteria. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2022, vol. 22, iss. 1, pp. 62–89 (in Russian). https://doi.org/10.18500/1816-9791-2022-22-1-62-89, EDN: ZYXHTD
- Dol A. V., Dol E. S., Ivanov D. V. Biomechanical modelling of surgical reconstructive treatment of spinal spondylolisthesis at L4–L5 level. Russian Journal of Biomechanics, 2018, vol. 22, iss. 1, pp. 31–44 (in Russian). https://doi.org/10.15593/RZhBiomeh/2018.1.03, EDN: YMCSSL
- Shishkin V. B., Golubev V. G. Preoperative planning in traumatology and orthopedics with the using of three-dimensional computer reconstruction and modeling technology. Sovremennye problemy nauki i obrazovaniya [Modern Problems of Science and Education], 2015, iss. 5, pp. 47 (in Russian). EDN: YTHYUQ
- Volokitina E. A., Antoniadi Yu. V., Gilev M. V. Predoperatsionnoe planirovanie implantatsii endoproteza tazobedrennogo sustava pri displasticheskom koksartroze [Preoperative Planning of Hip Replacement Implantation in Dysplastic Coxarthrosis]. Ekaterinburg, Ural State Medical Universitym Publ., 2015. 12 p. (in Russian).
- Sotto-Maior B. S., Rocha E. P., de Almeida E. O., Freitas-Junior A. C., Anchieta R. B., Del Bel Cury A. A. Influence of high insertion torque on implant placement: An anisotropic bone stress analysis. Brazilian Dental Journal, 2010, vol. 21, iss. 6, pp. 508–514. https://doi.org/10.1590/S0103-64402010000600005
- Glantz S. Mediko-biologicheskaya statistika [Biomedical Statistics]. Moscow, Praktika, 1998. 459 p. (in Russian).
- Fairbank J. C., Pynsent P. B. The oswestry disability index. SPINE, 2000, vol. 25, iss. 22, pp. 2940–2952. https://doi.org/10.1097/00007632-200011150-00017
- Kaplun A. B., Morozov E. M., Shamraeva M. A. ANSYS v rukakh inzhenera: Prakticheskoye rukovodstvo [ANSYS in the Hands of an Engineer: A Practical Guide]. Moscow, Editorial URSS, 2003. 272 p. (in Russian).
- Pan C., Wang G., Sun J. Correlation between the apex of lumbar lordosis and pelvic incidence in asymptomatic adult. European Spine Journal, 2020, vol. 29, iss. 3, pp. 420–427. https://doi.org/10.1007/s00586-019-06183-y
- Legaye J., Duval-Beaupere G. Sagittal plane alignment of the spine and gravity: A radiological and clinical evaluation. Acta Orthopaedica Belgica, 2005, vol. 71, iss. 2, pp. 213–220.
- Pitkanen M. T., Manninen H. I., Lindgren K. A., Sihvonen T. A., Airaksinen O., Soimakallio S. Segmental lumbar spine instability at flexion-extension radiography can be predicted by conventional radiography. Clinical Radiology, 2002, vol. 57, iss. 7, pp. 632–639. https://doi.org/10.1053/crad.2001.0899
- Lee J. B., Kim I. S., Lee J. J., Park J. H., Cho C. B., Yang S. H., Sung J. H., Hong J. T. Validity of a smartphone application (Sagittalmeter Pro) for the measurement of sagittal balance parameters. World Neurosurg, 2019, vol. 126, pp. e1–e8. https://doi.org/10.1016/j.wneu.2018.11.242
- Havaldar R., Pilli S. C., Putti B. B. Insights into the effects of tensile and compressive loadings on human femur bone. Advanced Biomedical Research, 2014, vol. 3, iss. 1, pp. 101. https://doi.org/10.4103/2277-9175.129375
- Goldstein S. A. The mechanical properties of trabecular bone: Dependence on anatomic location and function. Journal of Biomechanics, 1987, vol. 20, iss. 11–12, pp. 1055–1061. https://doi.org/10.1016/0021-9290(87)90023-6
- Smit T. H., van Tunen M. S., van der Veen A. J., Kingma I., van Dieen J. H. Quantifying intervertebral disc mechanics: A new definition of the neutral zone. BMC Musculoskeletal Disorders, 2011, vol. 7, iss. 12, pp. 38. https://doi.org/10.1186/1471-2474-12-38
- Brown T., Hansen R. J., Yorra A. J. Some mechanical tests on the lumbosacral spine with particular reference to the intervertebral discs: A preliminary report. The Journal of Bone & Joint Surgery, 1957, vol. 39, iss. 5. Р. 1135–1164. https://doi.org/10.2106/00004623-195739050-00014
- Gary K. W., Cao Y., Burns S. P., McDonald S. D., Krause J. S. Employment, health outcomes, and life satisfaction after spinal cord injury: Comparison of veterans and nonveterans. Spinal Cord, 2020, vol. 58, iss. 1, pp. 3–10. https://doi.org/10.1038/s41393-019-0334-9
- Hansson T. H., Keller T. S., Panjabi M. M. A study of the compressive properties of lumbar vertebral trabeculae: Effects of tissue characteristics. SPINE, 1987, vol. 12, iss. 1, pp. 56–62. https://doi.org/10.1097/00007632-198701000-00011
- Farfan H. F. Mechanical Disorders of the Low Back. Philadelphia, Lea & Febigcr, 1973. 247 p.
- Gushcha A. O., Yusupova A. R. Evaluation of outcomes of surgical treatment for degenerative diseases of the spine. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika), 2017, vol. 14, iss. 4, pp. 85–94 (in Russian). https://doi.org/10.14531/ss2017.4.85-94
- Solberg T., Johnsen L. G., Nygaard Ø. P., Grotle M. Can we define success criteria for lumbar disc surgery? Acta Orthopaedica, 2013, vol. 84, iss. 2, pp. 196–201. https://doi.org/10.3109/17453674.2013.786634
- Dreischarf M., Zander T., Shirazi-Adl A., Puttlitz C. M., Adam C. J., Chen C. S., Goel V. K., Kiapour A., Kim Y. H., Labus K. M., Little J. P., Park W. M., Wang Y. H., Wilke H. J., Rohlmann A., Schmidt H. Comparison of eight published static finite element models of the intact lumbar spine: Predictive power of models improves when combined together. Journal of Biomechanics, 2014, vol. 47, iss. 8, pp. 1757–1766. https://doi.org/10.1016/j.jbiomech.2014.04.002
- Polienko A. V., Ivanov D. V., Kireev S. I., Bessonov L. V., Muldasheva A. M., Olenko E. S. Numerical analysis of the stress-strain state of osteotomies of the first metatarsal bone. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2023, vol. 23, iss. 4, pp. 496–511 (in Russian). https://doi.org/10.18500/1816-9791-2023-23-4-496-511, EDN: OZSOKF
- 281 reads