For citation:
Trynin A. Y., Kireeva E. D. The Principle of Localization at the Class of Functions Integrable in the Riemann for the Processes of Lagrange – Sturm – Liouville. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2020, vol. 20, iss. 1, pp. 51-63. DOI: 10.18500/1816-9791-2020-20-1-51-63, EDN: YRYAST
The Principle of Localization at the Class of Functions Integrable in the Riemann for the Processes of Lagrange – Sturm – Liouville
Let us say that the principle of localization holds at the class of functions F at point x0 ∈ [0, π] for the Lagrange –Sturm – Liouville interpolation process LSLn (f, x) if limn→∞ LSLn (f, x0) − LSLn (g, x0) = 0 follows from the fact that the condition f(x) = g(x) is met for any two functions f and g belonging to F in some neighborhood Oδ(x0), δ > 0. It is proved that the principle of localization at the class of Riemann integrable functions holds for interpolation processes built on the eigenfunctions of the regular Sturm – Liouville problem with a continuous potential of bounded variation. It is established that the principle of localization at the class of continuous on the segment [0, π] functions holds for interpolation processes built on the eigenfunctions of the regular Sturm – Liouville problem with an optional continuous potential of bounded variation. We consider the case of boundary conditions of the third kind, from which the boundary conditions of the first kind are removed. Approximative properties of Lagrange –Sturm – Liouville operators at point x0 ∈ [0, π]. in both cases depend solely on the values of the approximate function just in the neighborhood of this point x0 ∈ [0, π].
- Natanson G. I. About one interpolation process. Uchenye zapiski Leningradskogo pedagogicheskogo insituta [Scientific notes of the Leningrad Pedagogical Institute], 1958, vol. 166, pp. 213–219 (in Russian).
- Kashin B. S., Saakyan A. A. Ortogonal’nye ryady [Orthogonal series]. Moscow, Izd-vo AFTs, 1999. 550 p. (in Russian).
- Novikov I. Ya., Stechkin S. B. Basic wavelet theory. Russian Math. Surveys, 1998, vol. 53, iss. 6, pp. 1159–1231. DOI: https://doi.org/10.1070/rm1998v053n06ABEH000089
- Stenger F. Numerical Methods Based on Sinc and Analytic Functions. Springer Ser. Comput. Math., vol. 20, New York, Springer-Verlag, 1993. 565 p. DOI: https://doi.org/10.1007/978-1-4612-2706-9
- Dobeshi I. Desyat’ lektsiy po veivletam [Ten Wavelet Lectures]. Izhevsk, NITs “Regulyarnaya i khaoticheskaya dinamika”, 2001. 464 p. (in Russian).
- Butzer P. L. A retrospective on 60 years of approximation theory and associated fields. Journal of Approximation Theory, 2009, vol. 160, iss. 1–2, pp. 3–18. DOI: https://doi.org/10.1016/j.jat.2009.05.004
- Shmukler A. I., Shulman T. A. Certain properties of Kotel’nikov series. Soviet Math. (Iz. VUZ), 1974, vol. 18, iss. 3, pp. 81–90.
- Livne O. E., Brandt A. E. MuST: The multilevel sinc transform. SIAM J. Sci. Comput., 2011, vol. 33, iss. 4, pp. 1726–1738. DOI: https://doi.org/10.1137/100806904
- Krivoshein A., Skopina M. Multivariate Sampling-Type Approximation. Analysis and Applications, 2017, vol. 15, no. 4, pp. 521–542. DOI: https://doi.org/10.1142/S0219530516500147
- Kolomoitsev Yu., Skopina M. Around Kotelnikov – Shannon Formula. 2017 12th International Conference on Sampling Theory and Applications (SampTA 2017). IEEE, 2017, pp. 279–282. DOI: https://doi.org/10.1109/SAMPTA.2017.8024385
- Maleknejad K., Rostami Ya., Shahi Kalalagh H. Numerical solution for first kind Fredholm integral equations by using sinc collocation method. IJAPM, 2016, vol. 6, no. 3, pp. 120– 128. DOI: https://doi.org/10.17706/ijapm.2016.6.3.120-128
- Belichenko K. V., Sobolev V. M. Sinc approximation of data RFID methods. Matematika. Mekhanika [Mathematics. Mechanics]. Saratov, Izdatel’stvo Saratovskogo universiteta, 2017, iss. 19, pp. 7—9 (in Russian).
- Shakirov I. A. Influence of the choice of Lagrange interpolation nodes on the exact and approximate values of the Lebesgue constants. Siberian Math. J., 2014, vol. 55, iss. 6, pp. 1144–1160. DOI: https://doi.org/10.1134/S0037446614060184
- Coroianu L., Gal G. S. Localization results for the non-truncated max-product sampling operators based on Fejer and sinc-type kernels. Demonstratio Math., 2016, vol. 49, iss. 1, pp. 38–49. DOI: https://doi.org/10.1515/dema-2016-0005
- Richardson M., Trefethen L. A sinc function analogue of Chebfun. SIAM J. Sci. Comput., 2011, vol. 33, iss. 5, pp. 2519–2535. DOI: https://doi.org/10.1137/110825947
- Tharwat M. M. Sinc approximation of eigenvalues of Sturm – Liouville problems with a Gaussian multiplier. Calcolo, 2014, vol. 51, iss. 3, pp. 465–484. DOI: https://doi.org/10.1007/s10092-013-0095-3
- Alquran M. T., Al-Khaled K. Numerical comparison of methods for solving systems of conservation laws of mixed type. Int. Journal of Math. Analysis, 2011, vol. 5, no. 1, pp. 35–47.
- Sklyarov V. P. On the best uniform sinc-approximation on a finite interval. East J. Approx., 2008, vol. 14, iss. 2, pp. 183–192.
- Mohsen A., El-Gamel M. A Sinc-collocation method for the linear Fredholm integrodifferential equations. Z. Angew. Math. Phys., 2007, vol. 58, iss. 3, p. 380–390. DOI: https://doi.org/10.1007/s00033-006-5124-5
- Umakhanov A. Ya., Sharapudinov I. I. Interpolation of functions by the Whittaker sums and their modifications: conditions for uniform convergence. Vladikavkazskiy matematicheskiy zhurnal [Vladikavkaz Mathematical Journal], 2016, vol. 18, no. 4, pp. 61–70 (in Russian).
- Trynin A. Yu. On some properties of sinc approximations of continuous functions on the interval. Ufa Math. J., 2015, vol. 7, iss. 4, pp. 111–126. DOI: https://doi.org/10.13108/2015-7-4-111
- Trynin A. Yu. On necessary and sufficient conditions for convergence of sinc approximations. St. Petersburg Math. J., 2016, vol. 27, iss. 5, pp. 825–840. DOI: https://doi.org/10.1090/spmj/1419
- Trynin A. Yu. Approximation of continuous on a segment functions with the help of linear combinations of sincs. Russian Math. (Iz. VUZ), 2016, vol. 60, iss. 3, pp. 63–71. DOI: https://doi.org/10.3103/S1066369X16030087
- Trynin A. Yu. The divergence of Lagrange interpolation processes in eigenfunctions of the Sturm – Liouville problem. Russian Math. (Iz. VUZ), 2010, vol. 54, iss. 11, pp. 66–76. DOI: https://doi.org/10.3103/S1066369X10110071
- Trynin A. Yu. On the absence of stability of interpolation in eigenfunctions of the Sturm – Liouville problem. Russian Math. (Iz. VUZ), 2000, vol. 44, iss. 9, pp. 58–71.
- Mosina K. B. The Dini – Lipschitz principle for the Lagrange – Sturm – Liouville interpolation process. Matematika. Mekhanika [Mathematics. Mechanics]. Saratov, Izdatel’stvo Saratovskogo universiteta, 2013, iss. 15, pp. 56–59 (in Russian).
- Mosina K. B. Nevai formula for the Lagrange – Sturm – Liouville interpolation process. Trudy Matematicheskogo tsentra imeni N. I. Lobachevskogo [Works of the N. I. Lobachevsky Mathematical Center], 2013, vol. 46, pp. 316–318 (in Russian).
- Turashvili K. B. Asymptotic formulas for the eigenfunctions and eigenvalues of the Sturm – Liouville problem. Matematika. Mekhanika [Mathematics. Mechanics]. Saratov, Izdatel’stvo Saratovskogo universiteta, 2012, iss. 14, pp. 73–76 (in Russian).
- Turashvili K. B. On the lack of stability of interpolation with respect to the eigenfunctions of the Sturm – Liouville problem. Trudy Matematicheskogo tsentra imeni N. I. Lobachevskogo [Works of the N. I. Lobachevsky Mathematical Center], 2011, vol. 44, pp. 347–350 (in Russian).
- Turashvili K. B. On the interpolation analogue of the integral sign of Dini. Matematika. Mekhanika [Mathematics. Mechanics]. Saratov, Izdatel’stvo Saratovskogo universiteta, 2010, iss. 12, pp. 94–98 (in Russian).
- Trynin A. Yu. Uniform convergence of Lagrange – Sturm – Liouville processes on one functional class. Ufa Math. J., 2018, vol. 10, iss. 2, pp. 93–108. DOI: https://doi.org/10.13108/2018-10-2-93
- Trynin A. Yu. A criterion of convergence of Lagrange – Sturm – Liouville processes in terms of one-sided modulus of variation. Russian Math. (Iz. VUZ), 2018, vol. 62, iss. 8, pp. 51–63. DOI: https://doi.org/10.3103/S1066369X1808008X
- Trynin A. Yu. Teorema otschetov na otrezke i ee obobscheniya: Teorema diskretizatsii dlia sink approksimatsii i ee obobshchenie [Sample theorem on a segment and its generalization: Discretization theorem for sinc approximation and its generalization]. LAP LAMBERT Academic Publishing RU, 2016. 488 p. (in Russian).
- Trynin A. Yu. On inverse nodal problem for Sturm – Liouville operator. Ufa Math. J., 2013, vol. 5, iss. 4, pp. 112–124. DOI: https://doi.org/10.13108/2013-5-4-112
- Privalov A. A. Teoriya interpolirovaniya funktsii [Function Interpolation Theory]. Saratov, Izdatel’stvo Saratovskogo universiteta, 1990. 230 p. (in Russian).
- Golubov B. I. Spherical Jump of a Function and the Bochner – Riesz Means of Conjugate Multiple Fourier Series and Fourier Integrals. Math. Notes, 2012, vol. 91, iss. 4, pp. 479– 486. DOI: https://doi.org/10.1134/S0001434612030212
- Golubov B. I. Absolute convergence of multiple Fourier series. Math. Notes, 1985, vol. 31, iss. 1, pp. 8–15. DOI: https://doi.org/10.1007/BF01652507
- Dyachenko M. I. On a class of summability methods for multiple Fourier series. Sb. Math., 2013, vol. 204, iss. 3, pp. 307–322. DOI: https://doi.org/10.1070/SM2013v204n03ABEH004302
- Skopina M. A., Maksimenko I. E. Multidimensional periodic wavelets. St. Petersburg Math. J., 2004, vol. 15, iss. 2, pp. 165–190. DOI: https://doi.org/10.1090/S1061-0022-04-00808-8
- Dyachenko M. I. Uniform Convergence of Hyperbolic Partial Sums of Multiple Fourier Series. Math. Notes, 2004, vol. 76, iss. 5, pp. 673–681. DOI: https://doi.org/10.1023/B:MATN.0000049666.00784.9d
- Ivannikova T. A., Timashova E. V., Shabrov S. A. On necessary conditions for a minimum of a quadratic functional with a Stieltjes integral and zero coefficient of the highest derivative on the part of the interval. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2013, vol. 13, iss. 2, pt. 1, pp. 3–8 (in Russian). DOI: https://doi.org/10.18500/1816-9791-2013-13-2-1-3-8
- Sansone Dzh. Obyknovennye differentsial’nye uravneniya [Ordinary Differential Equations: in 2 vols.]. Moscow, Izdatel’stvo inostrannoi literatury, vol. 1, 1953, 336 p.; vol. 2, 1954, 428 p. (in Russian).
- Egorova I. A. On the principle of localization in the theory of interpolation. Uchenye zapiski Leningradskogo pedagogicheskogo insituta [Scientific notes of the Leningrad Pedagogical Institute], 1949, vol. 86, pp. 317–335 (in Russian).
- Natanson I. P. Teoriya funktsiy veshchestvennoy peremennoy [Theory of functions of a real variable]. Moscow, Nauka, 1974. 480 p. (in Russian).
- 1457 reads