For citation:
Shabalin P. L., Faizov R. R. The Riemann problem on a ray for generalized analytic functions with a singular line. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2023, vol. 23, iss. 1, pp. 58-69. DOI: 10.18500/1816-9791-2023-23-1-58-69, EDN: UYQLJS
The Riemann problem on a ray for generalized analytic functions with a singular line
In this paper, we study an inhomogeneous Riemann boundary value problem with a finite index and a boundary condition on a ray for a generalized Cauchy – Riemann equation with a singular coefficient. For the solution of this problem, we derived a formula for the general solution of the generalized Cauchy – Riemann equation under constraints that led to an infinite index of logarithmic order of the accompanying problem for analytical functions. We have obtained a formula for the general solution of the Riemann problem and conducted a complete study of the existence and the number of solutions of a boundary value problem for generalized analytic functions with a singular line.
- Vekua I. N. Obobshchennye analiticheskie funktsii [Generalized Analytic Functions]. Moscow, Nauka, 1988. 507 p. (in Russian).
- Mikhailov L. G. Novye klassy osobykh integral’nykh uravneniy i ikh primenenie k differentsial’nym uravneniyam s singulyarnymi koeffitsiyentami [New Classes of Singular Integral Equations and Their Application to Differential Equations with Singular Coefficients]. Dushanbe, TadjikNIINTI, 1963. 183 p. (in Russian).
- Radzhabov N. R. Integralnye predstavleniya i granichnye zadachi dlya nekotorykh differentsial’nykh uravneniy s singuliarnoy liniey ili singuliarnymi poverkhnostyami [Integral Representations and Boundary Value Problems for Some Differential Equations with Singular Line or Singular Surfaces]. Vol. 1. Dushambe, Tadzhikskiy gosuniversitet Publ., 1980. 147 p. (in Russian).
- Radzhabov N. R. Integral’nye predstavleniya i granichnye zadachi dlya nekotorykh differentsial’nykh uravneniy s singuliarnoi liniei ili s singuliarnymi poverkhnostiami [Integral Representations and Boundary Value Problems for Some Differential Equations with Singular Line or Singular Surfaces]. Vol. 2. Dushambe, Tadzhikskiy gosuniversitet Publ., 1981. 170 p. (in Russian).
- Radzhabov N. R. Integral representations and boundary value problems for the generalized Cauchy – Riemann system with a singular line. Doklady Akademii Nauk SSSR, 1982, vol. 267, iss. 2, pp. 300–305 (in Russian). Available at: https://mi.mathnet.ru/dan45725 (accessed 2 August 2022).
- Radzhabov N. R., Rasulov A. B. Integral representations and boundary value problems for a class of systems of differential equations of elliptic type with singular manifolds. Differentsial’nye Uravneniya, 1989, vol. 25, iss. 7, pp. 1279–1981 (in Russian). Available at: https://mi.mathnet.ru/de6927 (accessed 2 August 2022).
- Usmanov Z. D. Generalized Cauchy – Riemann Systems with a Singular Point. New York, Routledge, 1997. 232 p. (Russ. ed.: Dushambe, TadzhikNIINTI, 1993. 245 p.). https://doi.org/10.1201/9780203753750
- Begehr H., Dao-Qing Dai. On continuous solutions of a generalized Cauchi – Riemann system with more than one singularity. Journal of Differential Equations, 2004, vol. 196, iss. 1, pp. 67–90. https://doi.org/10.1016/j.jde.2003.07.013
- Meziani A. Representation of solutions of a singular CR equation in the plane. Complex Variables and Elliptic Equations, 2008, vol. 53, iss. 12, pp. 1111–1130. Available at: https://doi.org/ 10.1080/17476930802509239 (accessed 2 August 2022).
- Rasulov A. B. Representation of the variety of solutions and investigation of the boundary value problems for some generalized Cauchy – Riemann systems with one and two singular lines. Izvestiya AN Tadzh. SSR. Seriia fiziko-matematicheskikh, khimicheskikh i geologicheskikh nauk, 1982, iss. 4 (84), pp. 23–32 (in Russian).
- Rasulov A. B., Soldatov A. P. Boundary value problem for a generalized Cauchy – Riemann equation with singular coefficients. Differential Equations, 2016, vol. 52, iss. 5, pp. 616–629. https://doi.org/10.1134/S0374064116050083
- Fedorov Iu. S., Rasulov A. B. Hilbert type problem for a Cauchy – Riemann equation with singularities on a circle and at a point in the lower-order coefficients. Differential Equations, 2021, vol. 57, iss. 1, pp. 127–131. https://doi.org/10.1134/S0012266121010122
- Rasulov A. B. The Riemann problem on a semicircle for a generalized Cauchy – Riemann system with a singular line. Differential Equations, 2004, vol. 40, iss. 9, pp. 1364–1366. https://doi.org/10.1007/s10625-005-0015-7
- Rasulov A. B. Integral representations and the linear conjugation problem for a generalized cauchy-riemann system with a singular manifold. Differential Equations, 2000, vol. 36, iss. 2, pp. 306–312. https://doi.org/10.1007/BF02754217
- Govorov N. V. Riemann’s Boundary Problem with Infinite Index. Operator Theory: Advances and Applications, vol. 67. Berlin, Birkhauser Basel, 1994. 263 p. https://doi.org/10.1007/978-3-0348-8506-5 (Russ. ed.: Moscow, Nauka, 1986. 240 p.).
- Monakhov V. N., Semenko E. V. Kraevye zadachi i psevdodifferentsial’nye operatory na rimanovykh poverkhnostyakh [Boundary Value Problems and Pseudodifferential Operators on Riemann Surfaces]. Moscow, Fizmatlit, 2003. 416 p. (in Russian). EDN: UGLDLN
- Ostrovskii I. V. Homogeneous Riemann boundary value problem with infinite index on a curved contour. Theory of Functions, Functional Analysis and Their Applications, 1991, iss. 56, pp. 95–105 (in Russian).
- Yurov P. G. Inhomogeneous Riemann boundary value problem with infinite index of logarithmic order a > 1. In: Materialy Vsesoyuznoy konferentsii po kraevym zadacham [Materials of the All-Union Conference on Boundary Value Problems]. Kazan, Kazan State University Publ., 1970, pp. 279–284 (in Russian).
- Yurov P. G. The homogeneous Riemann boundary value problem with an infinite index of logarithmic type. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 1966, iss. 2, pp. 158–163 (in Russian). Available at: https://mi.mathnet.ru/ivm2700 (accessed 2 August 2022).
- Salimov R. B., Khasanova E. N. The solution of the homogeneous boundary value problem of Riemann with infinite index of logarithmic order on the beam by a new method. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2017, vol. 17, iss. 2, pp. 160–171 (in Russian). https://doi.org/10.18500/1816-9791-2017-17-2-160-171
- 1334 reads