Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Kozlov V. A., Titov G. N. The structure of groups with cyclic commutator subgroups indecomposable to a subdirect product of groups. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2021, vol. 21, iss. 4, pp. 442-447. DOI: 10.18500/1816-9791-2021-21-4-442-447, EDN: UJZYCX

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
30.11.2021
Full text:
(downloads: 842)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
512.54
EDN: 
UJZYCX

The structure of groups with cyclic commutator subgroups indecomposable to a subdirect product of groups

Autors: 
Kozlov Vladimir Anatolievich, Armavir State Pedagogical University
Titov Georgiy Nikolaevich, Kuban State University
Abstract: 

The article studies finite groups indecomposable to subdirect product of groups (subdirectly irreducible groups), commutator subgroups of which are cyclic subgroups. The article proves that extensions of a primary cyclic group by any subgroup of its automorphisms completely describe the structure of non-primary finite subdirectly irreducible groups with a cyclic commutator subgroup. The following theorem is the main result of this article: a finite non-primary group is subdirectly irreducible with a cyclic commutator subgroup if and only if for some prime number $p\geq 3$ it contains a non-trivial normal cyclic $p$-subgroup that coincides with its centralizer in the group. In addition, it is shown that the requirement of non-primality in the statement of the theorem is essential.

References: 
  1. Gorchakov Yu. M. Teoriya grupp [The Theory of Groups]. Tver, TSU, 1998. 112 p. (in Russian).
  2. Gorchakov Yu. M. Gruppy s konechnymi klassami sopryazhennykh elementov [Groups with Finite Conjugacy Classes]. Moscow, Nauka, 1978. 120 p. (in Russian).
  3. Kargapolov M. I., Merzljakov Ju. I. Fundamentals of the Theory of Groups. New York, Springer-Verlag, 1979. 203 p. (Russ. ed.: Moscow, Nauka, 1982. 288 p.).
  4. Cheng Y. On finite p-groups with cyclic commutator subgroup. Archiv der Mathematik, 1982, vol. 39, iss. 4, pp. 295–298. https://doi.org/10.1007/BF01899434
  5. Dark R. S., Newell M. L. On conditions for commutators to form a subgroup. Journal of the London Mathematical Society, 1978, vol. s2-17, iss. 2, pp. 251–162. https://doi.org/ 10.1112/jlms/s2-17.2.251
  6. Leong Y. K. Odd order nilpotent groups of class two with cyclic center. Journal of the Australian Mathematical Society, 1974, vol. 17, iss. 2, pp. 142–153. https://doi.org/10. 1017/S1446788700016724
  7. Leong Y. K. Finite 2-groups of class two with cyclic center. Journal of the Australian Mathematical Society, 1979, vol. 27, iss. 2, pp. 125–140. https://doi.org/10.1017/S1446788700012052
  8. Miech R. J. On p-groups with cyclic commutator subgroup. Journal of the Australian Mathematical Society, 1975, vol. 20, iss. 2, pp. 178–198. https://doi.org/10.1017/ S1446788700020486
  9. Finogenov A. A. Finite p-groups with cyclic commutator subgroup and cyclic center. Mathematical Notes, 1998, vol. 63, iss. 6, pp. 802–812. https://doi/10.1007/BF02312775
  10. Skuratovskii R. V. Commutator subgroup of Sylow 2-subgroups of alternating group and the commutator width in the wreath product. Buletinul Academiei de Stiinte a Republicii Moldova. Matematica, 2020, iss. 1, pp. 3–16.
  11. Hall M. Teoriya grupp [The Theory of Groups]. Moscow, Inostrannaya literatura, 1962. 468 p. (in Russian).
  12. Chernikov S. N. Gruppy s zadannymi svoystvami sistemy podgrupp [Groups with Given Properties of a System of Subgroups]. Moscow, Nauka, 1980. 384 p. (in Russian).
  13. Shemetkov L. A. Formatsii konechnykh grupp [Formations of Finite Groups]. Moscow, Nauka, 1978. 272 p. (in Russian).
Received: 
15.03.2021
Accepted: 
03.08.2021
Published: 
30.11.2021