Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Mozhey N. P. Three-dimensional Homogeneous Spaces, Not Admitting Invariant Connections. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2016, vol. 16, iss. 4, pp. 413-421. DOI: 10.18500/1816-9791-2016-16-4-413-421, EDN: XHPYHN

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
14.11.2016
Full text:
(downloads: 155)
Language: 
Russian
Heading: 
UDC: 
514.76
EDN: 
XHPYHN

Three-dimensional Homogeneous Spaces, Not Admitting Invariant Connections

Autors: 
Mozhey Natalya Pavlovna, Belarussian State University of Informatics and Radioelectronics
Abstract: 

The purpose of the work is the classification of three-dimensional isotropy-faithful homogeneous spaces, not admitting invariant connections. The local classification of homogeneous spaces is equivalent to the description of effective pairs of Lie algebras. If there exists at least one invariant connection then the space is isotropy-faithful, but the isotropy-faithfulness is not sufficient for the space in order to have invariant connections. The peculiarity of techniques presented in the work is the application of purely algebraic approach, the compound of different methods of differential geometry, theory of Lie groups, Lie algebras and homogeneous spaces.

References: 
  1. Rashevskii P. K. Rimanova geometriia i tenzornyi analiz [Riemannian geometry and tensor analysis]. Moscow, Nauka, 1967, 664 p. (in Russian).
  2. Nomizu K. Invariant affine connections on hфomogeneous spaces. Amer. J. Math., 1954, vol. 76, no. 1, pp. 33–65. DOI: https://doi.org/10.2307/2372398.
  3. Mozhey N. P. Trekhmernye izotropno-tochnye odnorodnye prostranstva i sviaznosti na nikh [Three-dimensional isotropy-faithful homogeneous spaces and connections on them]. Kazan’, Kazan’ Univ. Press, 2015, 394 p. (in Russian).
  4. Kobayashi S., Nomizu K. Foundations of differential geometry. New York, John Wiley and Sons, 1963, vol. 1, 340 p.; 1969, vol. 2, 485 p.
  5. Mozhey N. Invariant affine connections on three-dimensional homogeneous spaces with nonsolvable transformation group. Lobachevskii J. Math., 2014, vol. 35, no. 3, pp. 218–240. DOI: https://doi.org/10.1134/S1995080214030093.
  6. Komrakov B., Tchourioumov A., Doubrov B. Twodimensional homogeneous spaces. Preprint series: Pure mathematics, 1993, no. 17. 142 p. Available at: http://urn.nb.no/URN:NBN:no-4768 (accessed 15.11.2015).
Received: 
15.07.2016
Accepted: 
27.10.2016
Published: 
30.11.2016