For citation:
Antonov S. Y., Antonova A. V. To Chang Theorem. III. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2018, vol. 18, iss. 2, pp. 128-143. DOI: 10.18500/1816-9791-2018-18-2-128-143, EDN: XQFNQD
To Chang Theorem. III
Various multilinear polynomials of Capelli type belonging to a free associative algebra F {X ∪ Y } over an arbitrary field F generated by a countable set X ∪ Y are considered. The formulas expressing coefficients of polynomial Chang R(¯x, ¯y|¯w) are found. It is proved that if the characteristic of field F is not equal two then polynomial R(¯x, ¯y| ¯w) may be represented by different ways in the form of sum of two consequencesof standard polynomial S− (¯x). The decomposition of Chang polynomial H (¯x, ¯y|¯w) different from already known is given. Besides, the connection between polynomials R(¯x, ¯y|¯w) and H (¯x, ¯y|¯w) is found. Some consequences of standard polynomial being of great interest for algebras with polynomial identities are obtained. In particular, a new identity of min imal degree for odd component of Z2 -graded matrix algebra M(m,m) (F) is given.
- Antonov S. Yu., Antonova A. V. To Chang theorem. II. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2017, vol. 17, no. 2, pp. 127–137 (in Russian). DOI: https://doi.org/10.18500/1816-9791-2017-17-2-127-137
- Antonov S. Yu., Antonova A. V. To Chang theorem. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2015, vol. 15, no. 3, pp. 247–251 (in Russian). DOI: https://doi.org/10.18500/1816-9791-2015-15-3-247-251
- Antonov S. Yu., Antonova A. V. Quasi-polynomials of Capelli. Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 2015, vol. 15, no. 4, pp. 371–382 (in Russian). DOI: https://doi.org/10.18500/1816-9791-2015-15-4-371-382
- Chang Q. Some consequences of the standard polynomial. Proc. Amer. Math. Soc., 1988, vol. 104, no. 3, pp. 707–710.
- Antonov S. Yu., Antonova A. V. On multiple polynomials of Capelli type. Physics and mathematics, Uchenye Zapiski Kazanskogo Universiteta. Ser. Fiziko-Matematicheskie Nauki, 2016, vol. 158, no. 1, pp. 5–25 (in Russian).
- Gateva T. V. The complexity of a bundle of varieties of associative algebras. Russian Math. Surveys, 1981, vol. 36, iss. 1, pp. 233.
- Kemer A. R. Remark on the standard identity. Math. Notes, 1978, vol. 23, no. 5, pp. 414–416. DOI: https://doi.org/10.1007/BF01789011
- Leron U. Multilinear identities of the matrix ring. Trans. Amer. Math. Soc., 1973. vol. 183, pp. 175–202.
- Amitsur S. A., Levitzki J. Minimal identities for algebras. Proc. Amer. Math. Soc., 1950,vol. 1, no. 4, pp. 449–463. DOI: https://doi.org/10.1090/S0002-9939-1950-0036751-9
- Mal’tsev Y. N. Basis for identities of the algebra of upper triangular matrices. Algebra and Logic, 1971, vol. 10, iss. 4, pp. 242–247. DOI: https://doi.org/10.1007/BF02219811
- Siderov P. N. A basis for the identities of an algebra of triangular matrices over an arbitrary field. PLISKA Studia Math. Bulgar., 1981, vol. 2, pp. 143–152 (in Russian).
- Kostant B. A theorem of Frobenius, a theorem of Amitsu r – Levitzki, and cohomology theory. J. Math. Mech., 1958, vol. 7, pp. 237–264. DOI: https://doi.org/10.1007/b94535_8
- Rowen L. H. Standard polynomials in matrix algebras. Trans. Amer. Math. Soc., 1974, vol. 190, pp. 253–284.
- Wenxin M., Racine M. Minimal identities of symmetric matrices. Trans. Amer. Math. Soc., 1990, vol. 320, no. 1, pp. 171–192. DOI: https://doi.org/10.1090/S0002-9947-1990-0961598-6
- Aver’yanov I. V. Basis of graded identities of the superalgebra M1,2(F). Math. Notes, 2009, vol. 85, no. 4, pp. 467–483. DOI: https://doi.org/10.1134/S0001434609030195
- 1083 reads