Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Kuznetsov V. N., Krivobok V. V., Stepanenko D. S. To the Problem of the Integrity of the Artin’s L-functions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2013, vol. 13, iss. 4, pp. 23-27. DOI: 10.18500/1816-9791-2013-13-4-23-27

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
15.12.2013
Full text:
(downloads: 137)
Language: 
Russian
Heading: 
UDC: 
501.1

To the Problem of the Integrity of the Artin’s L-functions

Autors: 
Kuznetsov Valentin Nikolaevich, Saratov State University
Krivobok Valery Victorovich, Saratov State University
Stepanenko Dmitrii Sergeevich, Saratov State University
Abstract: 

In this paper was described a class of Artin’s L-functions, each of which is meromorphic, their poles lays on the critical line Re s = 1/2 and coincides with zeroes of Dedekind’s Z-functions of some fields.

References: 
  1. Artin E. ¨Uber eine neue Art von L-Reihen. Abh. Math.Sem. Hamburgischen Univ., 1923, vol. 3, pp. 89–108.
  2. Heilbronn H. ³-functions and L-functions. Algebraic Number Theory (Proc. Instructional Conf., Brighton,1965), Washington, D.C., Thompson, 1967, pp. 310–348.
  3. Brauer R. On Artin’s L-series with general group  characters. Ann. of Math., 1947, vol. 48, pp. 502–514.
  4. Stepanenko D. S. On verification of Brauer’s Theorem concerning Artin’s L-functions of Number Fields. Izv.Sarat. Univ. N. S. Ser. Math. Mech. Inform., 2012,vol. 12, iss. 4, pp. 31–34 (in Russian).
  5. Kargapolov M. I., Merzliakov Iu. I. Osnovy teorii grupp [Fundamentals of Group Theory]. Moscow, Nauka, 1972 (in Russian).
  6.  Leng S. Algebra. Moscow, Mir, 1968 (in Russian). 
Short text (in English):
(downloads: 64)