Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Davidovich M. V., Shilovskii P. A., Andreichenko D. K. Using parallel computing technologies for modeling of metallic photonic crystals. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2013, vol. 13, iss. 2, pp. 86-90. DOI: 10.18500/1816-9791-2013-13-2-1-86-90, EDN: ORWVPF

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
27.02.2013
Full text:
(downloads: 116)
Language: 
Russian
Heading: 
UDC: 
519.681.5
EDN: 
ORWVPF

Using parallel computing technologies for modeling of metallic photonic crystals

Autors: 
Davidovich Mikhail Vladimirovich, Saratov State University
Shilovskii Pavel Aleksandrovich, Saratov State University
Andreichenko Dmitry Konstantinovich, Saratov State University
Abstract: 

This article presents opportunities of using parallel computing technologies Message Passing Interface and Open Computing Language for modeling of metallic photonic crystals with the method of Green's functions and integral equations. The efficiency of these technologies is analized and the results are presented. 

References: 
  1. Pendry J. B., Holden A. J., Stewart W. J. Youngs I. Extremely low frequency plasmons in metallic meso structures. Phys. Rev. Lett., 1996, vol. 76, pp. 4773–4776.
  2. Sievenpiper D. F., Sickmiller M. E., Yablonovitch E. 3D wire mesh photonic crystals. Phys. Rev. Lett., 1996, vol. 76, pp. 2480–2483.
  3. Simovski C. R., Belov P. A. Low-frequency spatial dispersion in wire media. Phys. Rev. E., 2004, vol. 70, pp. 046616(1–8).
  4. Zhao Y., Belov P. A., Hao Y. Modelling of wave propagation in wire media using spatially dispersive finite-difference time-domain method : numerical aspects. IEEE Trans., 2007, vol. AP-55, no. 6, pp. 1506–1513.
  5. Davidovich M. V. Photonic crystals : Green’s functions, integro-differential equations and simulation results. Radiophysics and Quantum Electronics, 2006, vol. 49, Issue 2, pp. 150–163.
  6. Davidovich M. V., Stephuk J. V., Shilovskii P. A. Electrophysical properties of metallic wire photonic crystals. Technical Physics, 2012, vol. 57, iss. 3, pp. 320– 327.
  7. Davidovich M. V., Stephuk J. V., Shilovsky P. A., Yavchunovskaya S. V. Material’nye parametry metallicheskikh provolochnykh fotonnykh kristallov [Material parameters of metallic wire photonic crystals]. Izluchenie i rasseianie elektromagnitnykh voln IREMV-2011 : tr. konf. [Radiation and Scattering of Electromagnetic Waves RSEMW-2011: Proc. conf.]. Taganrog, 2011, pp. 246–250.
  8. Shilovsky P., Atmakin D., Khvatov I. Using message passing interface technology for solving mathematical physics problems on parallel calculating systems. Presenting Academic Achievements to the World, Saratov, 2010, pp. 125–129.
  9. Message Passing Interface Forum. MPI : A Message Passing Interface Standard. Version 2.2. Available at: http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report. pdf (accessed 14 May 2012).
  10. The OpenCl specification. Version 1.2. Available at: http://www.khronos.org/registry/cl/specs/opencl-1.2.pdf (accessed 14 May 2012).
  11. Gropp W., Lusk E., Doss N., Skjellum A. A highperformance, portable implementation of the MPI message passing interface standard. Parallel Computing, 1996, September, vol. 22, no. 6, pp. 789–828.
Received: 
13.08.2012
Accepted: 
10.01.2013
Published: 
27.02.2013
Short text (in English):
(downloads: 62)