Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Starovoitov E. I., Leonenko D. V. Variable Bending of a Three-layer Rod with a Compressed Filler in the Neutron Flux. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2017, vol. 17, iss. 2, pp. 196-208. DOI: 10.18500/1816-9791-2017-17-2-196-208

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
22.05.2017
Full text:
(downloads: 51)
Language: 
Russian
Heading: 
UDC: 
539.374

Variable Bending of a Three-layer Rod with a Compressed Filler in the Neutron Flux

Autors: 
Starovoitov Eduard Ivanovich, Belarusian State University of Transport
Leonenko D. V., Belarusian State University of Transport
Abstract: 

The present paper considers variable bending of a three-layer elastoplastic bar with a compressible filler in the neutron flux. To describe kinematic properties of an asymmetric through thickness pack we have accepted the hypotheses of a broken line as follows: Bernoulli’s hypothesis is true in the thin bearing layers; Timoshenko’s hypothesis is true in the compressible through thickness filler with a linear approximation of displacements through the layer thickness. The filler’s work is taken into account in the tangential direction. The  physical stress-strain relations correspond to the theory of small elastoplastic deformations. By the variational method a system of differential equilibrium equations has been derived. The kinematic conditions of simply supported faces of the bar on the immovable in space rigid bases are presumed on the boundary. The solution of the boundary problem is reduced to the search for four functions, namely: deflections and longitudinal displacements of the medial surfaces of the bearing layers. An analytical solution has been derived by the method of elastic solutions by using the Moskvitin’s theorem about variable loadings. Its numerical analysis has been performed for the case of the uniform distribution of the continuous and local loads.

References: 
  1. Bolotin V. V., Novichkov Yu. N. Mekhanika mnogosloinykh konstruktsii [Mechanics of Multilayer Structures]. Moscow, Mashinostroenie, 1980. 375 p. (in Russian).
  2. Gorshkov A. G., Starovoitov E. I., Tarlakovskii D. V. Teoriia uprugosti i plastichnosti [Foundations of the Theory of Elasticity and Plasticity]. Moscow, Fizmatlit, 2011. 416 p. (in Russian).
  3. Kuznetsova E. L., Leonenko D. V., Starovoitov E. I. Natural vibrations of three-layer circular cylindrical shells in an elastic medium. Mech. Solids, 2015, vol. 50, no. 3, pp. 359–366. DOI: https://doi.org/10.3103/S0025654415030127.
  4. Leonenko D. V., Starovoitov E. I. Impulsive action on the three-layered circular cylindrical shells in elastic media. Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 2015, vol. 15, iss. 1, pp. 202–209. DOI: https://doi.org/10.18500/1816-9791-2015-15-2-202-209 (in Russian).
  5. Mochalin A. A. Parametric Oscillations of a Non-uniform Circular Cylindrical Shell of Variable Density under Different Boundary Conditions. Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 2015, vol. 15, iss. 2, pp. 210–214. DOI: https://doi.org/10.18500/1816-9791-2015-15-2-210-215 (in Russian).
  6. Tarlakovskii D. V., Fedotenkov G. V. Nonstationary 3D Motion of an Elastic Spherical Shell. Mech. Solids, 2015, vol. 50, no. 2, pp. 118–128. DOI: https://doi.org/10.3103/S0025654415020107.
  7. Tarlakovskii D. V., Fedotenkov G. V. Two-Dimensional Nonstationary Contact of Elastic Cylindrical or Spherical Shells. Journal of Machinery Manufacture and Reliability, 2014, vol. 43, no. 2, pp. 145–152. DOI: https://doi.org/10.3103/S1052618814010178.
  8. Kuznetsova E. L., Tarlakovskii D. V., Fedotenkov G. V. Propagation of Unsteady Waves in an Elastic Layer. Mech. Solids, 2011, vol. 46, no. 5, pp. 779–787. DOI: https://doi.org/10.3103/S0025654411050128.
  9. Fedotenkov G. V., Tarlakovskiy D. V. Analytic Investigation of Features of Stresses in Plane Nonstationary Contact Problems With Moving Boundaries. J. Math. Sci., 2009, vol. 162, no. 2, pp. 246–253. DOI: https://doi.org/10.1007/s10958-009-9635-4.
  10. Belostochny G. N., Rusina E. A. Obolochki and Geometrically Irregular Plates with a Temperature-Sensitive Thickness. Dokl. Ross. Akad. estestvennykh nauk. Povolzhskoe mezhregional’noe otdelenie 1999, no. 1, pp. 28–37 (in Russian).
  11. Rabboh S., Bondok N., Mahmoud T., El Kholy H. The Effect of Functionally Graded Materials into the Sandwich Beam Dynamic Performance. Materials Sciences and Appli- cations, 2013, vol. 4, pp. 751–760. DOI: https://doi.org/10.4236/msa.2013.411095.
  12. Havaldar S., Sharma R. Experimental Investigation of Dynamic Characteristics of Multilayer PU Foam Sandwich Panels. Journal of Minerals and Materials Characterization and Engineering, 2013, vol. 1, no. 5, pp. 201–206. DOI: https://doi.org/10.4236/jmmce.2013.15031.
  13. Yang L., Harrysson O., West H., Cormier D. A. Comparison of Bending Properties for Cellular Core Sandwich Panels. Materials Sciences and Applications, 2013, vol. 4, no. 8, pp. 471–477. DOI: https://doi.org/10.4236/msa.2013.48057.
  14. Moskvitin V. V. Tsiklicheskoe nagruzhenie elementov konstruktsii [Cyclic Loading of Elements of Designs]. Moscow, Nauka, 1981. 344 p. (in Russian).
  15. Moskvitin V. V., Starovoitov E. I. To the Study of the Stress-Strain State of Two-Layer Metal-Polymer Plates under Cyclic Loading. Izv. AN SSSR. Mekhanika tverdogo tela, 1986, no. 1, pp. 116–121 (in Russian).
  16. Il’iushin A. A., Ogibalov P. M. Uprugoplasticheskie deformatsii polykh tsilindrov [Elastic-Plastic Deformations of Hollow Cylinders]. Moscow, Moscow Univ. Press, 1960. 224 p. (in Russian).
  17. Il’iushin A. A. Plastichnost’. Ch. 1. Uprugoplasticheskie deformatsii [Plastic. Ch. 1. Elastic-Plastic Deformation]. Moscow, Gostekhizdat, 1948. 376 p. (in Russian).