Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Novikov E. A. Variable Order and Step Algorithm Based on a Stages of Runge – Kutta Method of Third Order of Accuracy. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2011, vol. 11, iss. 3, pp. 46-53. DOI: 10.18500/1816-9791-2011-11-3-1-46-53

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
15.07.2011
Full text:
(downloads: 415)
Language: 
Russian
Heading: 
UDC: 
519.622

Variable Order and Step Algorithm Based on a Stages of Runge – Kutta Method of Third Order of Accuracy

Autors: 
Novikov Evgenii Aleksandrovich, Institute of Computational Modelling, Siberian Branch of the Russian Academy of Sciences
Abstract: 

An inequality for the stability control of 3-stage Runge – Kutta method of 3th order of accuracy is obtained. Method of first order with expanded stability domain is constructed. Algorithm of variable order is formulated. The results of stiff system computations are provided, which confirm an increase in efficiency for the variable order method as compared to a calculation with fixed scheme.

References: 
  1. Shampine L. M. Implementation of Rosenbrock method // ACM Transaction on Mathematical Software. 1982. Vol. 8, No 5. P. 93–113.
  2. Новиков Е. А., Новиков В. А. Контроль устойчивости явных одношаговых методов интегрирования обыкновенных дифференциальных уравнений // Докл. АН СССР. 1984. Т. 277, No 5. С. 1058–1062.
  3. Новиков Е. А. Явные методы для жестких систем. Новосибирск: Наука, 1997. 197 с.
  4. Eright W. H., Hull T. E. Comparing numerical methods for the solutions of systems of ODE’s // BIT. 1975. No 15. P. 10–48.
  5. Хайрер Э., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Жесткие и дифференциально- алгебраические задачи. М.: Мир, 1990. 685 с