Izvestiya of Saratov University.
ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


компьютерная томография

Construction of 3D solid vertebral models using convolutional neural networks

The quality of solving the problem of biomechanical modeling largely depends on the created solid-state model of the biological object under study. Building a model based on computed tomography data for a particular patient is possible both in manual mode (software packages for processing medical images) and using automated tools for building a model (image segmentation), which significantly speeds up the process of creating a solid model, in contrast to the manual mode.

Using the Mask-RCNN Convolutional Neural Network to Automate the Construction of Two-Dimensional Solid Vertebral Models

Biomechanical modeling requires the construction of an accurate solid model of the object under study based on the data of a particular patient. This problem can be solved manually using modern software packages for medical data processing or using computer-aided design systems. This approach is used by many researchers and allows you to create accurate solid models, but is time consuming.

Influence of Convolution Kernel and Beam-Hardening Effect on the Assessment of Trabecular Bone Mineral Density Using Quantitative Computed Tomography

Quantitative computed tomography along with densitometry is used to assess mineral density and strength of bone tissue. Raw data obtained by computed tomography are converted by software using convolution kernels. It is known that the use of convolution kernels can significantly change tissue density, which is measured in Hounsfield units. The beam-hardening effect is described in literature: when x-ray passes through an object, the absorption of lower-energy x-ray photons occurs.

Biomechanical Assessment of the Bone Ingrowth Effect During Cementless Endoprosthesis Osteointegration

Finite elementmodel of porous titaniuminserts for cementless endoprosthesis was reconstructed usingX-ray tomography. The stress distribution is calculated for a model with open-cell foam and composite bone / titanium. The results explain the mechanism of the porous structure destruction and positive influence of the osteointegration effect on the strength properties. Numerical calculations are confirmed by experimental data of the porous samples during compression testing.