Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Nikitsin A. V. Biomechanical Assessment of the Bone Ingrowth Effect During Cementless Endoprosthesis Osteointegration. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2013, vol. 13, iss. 4, pp. 90-96. DOI: 10.18500/1816-9791-2013-13-4-90-96

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
15.12.2013
Full text:
(downloads: 182)
Language: 
Russian
Heading: 
UDC: 
616.728:51

Biomechanical Assessment of the Bone Ingrowth Effect During Cementless Endoprosthesis Osteointegration

Autors: 
Nikitsin Andrei Victorovich, Belarusian State University, Minsk, Belarus
Abstract: 

Finite elementmodel of porous titaniuminserts for cementless endoprosthesis was reconstructed usingX-ray tomography. The stress distribution is calculated for a model with open-cell foam and composite bone / titanium. The results explain the mechanism of the porous structure destruction and positive influence of the osteointegration effect on the strength properties. Numerical calculations are confirmed by experimental data of the porous samples during compression testing. It is shown that changes in mechanical properties of porous titanium due to process of bone ingrowth is a topical area for biomechanical research.

References: 
  1. Shen H., Brinson L. C. Finite element modelling of porous titanium. International Journal of Solids and Structures, 2007, vol. 44, pp. 320–335.
  2. Huanlong Li., Oppenheimer S. M., Stupp S. I., Dunand D. C., Brinston L. C. Effects of Pore Morphology and Bone Ingrowth on Mechanical Properties of Microporous Titanium as an Orthopaedic Implant Material. Materials Transactions, 2004, vol. 45,
  3. pp. 1124–1131.
  4. Maslov A. P., Ruckij A. V., Nikitsin A. V. Perelomy bedrennogo komponenta jendoprotezov tazobedrennogo sustava sistemy SLPS [Fractures of the femoral component of the endoprosthesis hip joint system of SLPS]. Medicina, 2013, vol. 80, pp. 7–13. (in Russian)
  5. Nikitsin A. V., Mikhasev G. I., Maslov A. P. Konechno-jelementnyj analiz vlijanija oblasti vrastanija na stabil’nost’ jendoproteza tazobedrennogo sustava [Finite element analysis of the influence of the field ingrown on the stability of the hip joint endoprosthesis]. Mehanika mashin mehanizmov i materialov, 2012, vol. 18, pp. 86–90. (in Russian).
  6. Esen Z., Tarhan Bor E., Bor E. Characterization of loose powder sintered porous titanium and Ti6Al4V alloy. Turkish J.Eng.Env.Science, 2009, vol. 33, pp. 207–219.
  7. Thelen S., Barthelat F., Brinson L.C. Mechanics considerations for micro-porous titanium as an orthopedic implant material. J. Biomed. Mater. Res. A, 2004, vol. 69,pp. 601–610.
  8. Vasconcellos L., Leite D., Nascimento F., Graca M., Carvalho Y., Cairo C. . Porous titanium for biomedical applications: An experimental study on rabbits. Med. Oral. patol. Oral. Cir. Bucal., 2010, vol. 2, pp. 407–412.
  9. Michailidis N., Stergioudi F., Omar H., Papadopoulos D., Tsipas D. N. Experimental and FEM analysis of the material response of porous metals imposed to mechanical loading. J. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2011, vol. 382, pp. 124–131.
  10. Nikitsin A. V., Shil’ko S. V. Ocenka vlijanija osteogeneza na mehanicheskie svojstva poristogo titana pri szhatii [Estimation of influence of osteogenesis on mechanical properties porous titanium at compression]. Teoreticheskaja i prikladnaja mehanika, 2013, vol. 28, pp. 127–129. (in Russian).
  11. Michailidis N., Stergioudi F., Omar H., Tsipas D. N. Investigation of the mechanical behaviour of open-cell Ni foams by experimental and FEM procedures. Advanced Engineering Materials, 2009, vol. 10, no. 12, pp. 1122–1126.
Short text (in English):
(downloads: 93)