For citation:
Yurko V. A. Inverse Spectral Problem for Discrete Operators in Topological Spaces. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2014, vol. 14, iss. 4, pp. 439-447. DOI: 10.18500/1816-9791-2014-14-4-439-447, EDN: TAAMKN
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online:
01.12.2014
Full text:
(downloads: 186)
Language:
Russian
Heading:
UDC:
517.984
EDN:
TAAMKN
Inverse Spectral Problem for Discrete Operators in Topological Spaces
Autors:
Yurko Vjacheslav Anatol'evich, Saratov State University
Abstract:
An inverse spectral problem for discrete operators of a triangular structure in topological spaces is studied. A constructive procedure for the solution of the inverse problem is provided. Necessary and sufficient conditions for its solvability are obtained.
Key words:
References:
- Atkinson F. Discrete and Continuous Boundary Problems. N. Y. : Academic Press, 1964.
- Nikishin E. M. The discrete Sturm – Liouville operator and some problems of the theory of functions // J. Soviet Math. 1986. Vol. 35. P. 2679–2744.
- Гусейнов Г. Ш. Определение бесконечной несамосопряженной матрицы Якоби по ее обобщенной спектральной функции // Матем. заметки. 1978. Т. 23, вып. 2. С. 237–248.
- Yurko V. A. On higher-order difference operators // J. Differ. Equ. Appl. 1995. Vol. 1. P. 347–352. Inverse Spectral Problem for Discrete Operators in Topological Spaces
Received:
07.06.2014
Accepted:
20.10.2014
Published:
01.12.2014
- 1166 reads