For citation:
Tyuleneva A. A. Approximation of the Riemann–Liouville Integrals by Algebraic Polynomials on the Segment. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2014, vol. 14, iss. 3, pp. 305-311. DOI: 10.18500/1816-9791-2014-14-3-305-311, EDN: SMSJWF
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online:
10.09.2014
Full text:
(downloads: 220)
Language:
Russian
Heading:
UDC:
517.51
EDN:
SMSJWF
Approximation of the Riemann–Liouville Integrals by Algebraic Polynomials on the Segment
Autors:
Tyuleneva Anna Anotol'evna, Saratov State University
Abstract:
The direct approximation theorem by algebraic polynomials is proved for Riemann–Liouville integrals of order r>0. As a corollary, we obtain asymptotic equalities for ε-entropy of the image of a Hölder type class under Riemann–Liouville integration operator.
Key words:
References:
- Terekhin A. P. Approximation of bounded p-variation functions. Izvestiya vuzov. Matematika, 1965, no. 2, pp. 171–187 (in Russian).
- Samko S. G., Kilbas A. A., Marichev O. I. Fractional Integrals and Derivatives: Theory and Applications, New York, Gordon and Breach Science, 1993. 1006 p.
- Kolmogorov A. N., Tikhomirov V. M. "-entropy and "-capacity of a set in the functional space. Uspehi mat. nauk, 1959, vol. 14, iss. 2, pp. 3–86 (in Russian).
- Volosivets S. S. Asymptotic properties of one compact set of smooth functions in the space of functions of bounded p-variation. Math. Notes, 1995, vol. 57, iss. 2, pp. 148–157.
- Lorentz G. G. Metric entropy and approximation. Bull. Amer. Math. Soc., 1966, vol. 72, no. 6, pp. 903–927.
- Edwards R. Fourier Series: A modern introduction. Vol. 1. New York, Springer, 1982, 234 p.
- Ibragimov I. I. On best approximation of a function whose s-th derivative has bounded variation on segment [−1, 1]. Doklady Akad. Nauk SSSR, 1953, vol. 90, no. 1. pp. 13–15 (in Russian).
- DeVore R., Lorentz G. G. Constructive approximation. Berlin, Heidelberg, Springer, 1993, 449 p.
- Korneichuk N. P. Exact Constants in Approximation Theory, 2009, Cambridge, Cambridge Univ. Press, 2009, 468 p.
- Nasibov F. G. On the order of best approximations of functions havong fractional derivative in Riemann – Liouville sense. Izv. AN Azerb. SSR. Ser. fiz.-mat. nauk, 1962, no. 3, pp. 51–57 (in Russian).
- Clements G. F. Entropies of several sets of real valued functions. Pacific J. Math., 1963, vol. 13, no. 4, pp. 1085–1095.
Received:
19.03.2014
Accepted:
23.07.2014
Published:
10.09.2014
- 1101 reads