Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Krasnoschekikh G. V., Volchkov V. V. Injectivity sets of the spherical mean operator with respect to the Bessel convolution. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2025, vol. 25, iss. 4, pp. 479-489. DOI: 10.18500/1816-9791-2025-25-4-479-489, EDN: HLNVFT

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
28.11.2025
Full text:
(downloads: 36)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
517.444,517.58
EDN: 
HLNVFT

Injectivity sets of the spherical mean operator with respect to the Bessel convolution

Autors: 
Krasnoschekikh Gleb Vitalievich, Donetsk State University
Volchkov Vitaliy Vladimirovich, Donetsk State University
Abstract: 

Let $C_\natural$ be the set of all even continuous functions on the real axis, $E$ be a non-empty set on $(0,+\infty)$, $\mathcal{R} f(x,t)$ be the spherical mean of the function $f\in C_\natural$ with center at the point $x\in E$ and radius $t>0$ with respect to Bessel convolution. The following problems arise for the operator $\mathcal{R}$: 1) find out whether a given set $E$ is an injectivity set of the transform $\mathcal{R}$; 2) if $E$ is not an injectivity set, then characterize all functions $f\in C_\natural$ such that $\mathcal{R} f(x,t)=0$ on $E\times(0,+\infty)$; 3) if $E$ is an injectivity set, then restore $f$ from the values of $\mathcal{R} f(x,t)$ on $E\times(0,+\infty)$. In this paper we obtain a solution of problems 1 and 2 for an arbitrary set $E\subset(0,+\infty)$, as well as a solution of problem 3 for the case when $E$ is a finite set of injectivity. It is shown that functions from the kernel of the transform $\mathcal{R}$ can be described in terms of series of the eigenfunctions of the Bessel operator converging in the space of distributions. It follows, in particular, that the set $E$ is not the injectivity set of the transform $\mathcal{R}$ if and only if it is contained in the set of zeros of some eigenfunction of the Bessel operator. Moreover, if $E=\{r_1,\ldots,r_m\}$ is a finite injectivity set, we find a class of inversion formula for the  transform $\mathcal{R}$ that depend on a set of polynomials $p_1,\ldots,p_m$. It is assumed that  $p_1,\ldots,p_m$ have a sufficiently high degree and satisfy some conditions related to the zeroes of  Fourier – Bessel transform of Dirac measures with supports at points $r_1, \ldots, r_m$.

Acknowledgments: 
The research was carried out in the framework of the state assignment of the Ministry of Science and Higher Education of the Russian Federation (project No. 124012400352-6).
References: 
  1. John F. Plane waves and spherical means applied to partial differential equations. New York, London, Interscience Publ., 1955. 172 p. (Russ. ed.: Moscow, IL, 1958. 158 p.).
  2. Helgason S. Groups and geometric analysis. Orlando, Academic Press, 1984. 654 p. (Russ. ed.: Moscow, Mir, 1987. 735 p.).
  3. Volchkov V. V. Integral geometry and convolution equations. Dordrecht, Kluwer, 2003. 454 p.
  4. Sitnik S. M., Shishkina E. L. Metod operatorov preobrazovaniya dlya differentsialnykh uravneniy s operatorami Besselya [Method of transformation operators for differential equations with Bessel operators]. Moscow, Fizmatlit, 2019. 221 p. (in Russian).
  5. Agranovsky M. L., Quinto E. T. Injectivity sets for the Radon transform over circles and complete systems of radial functions. Journal of Functional Analysis, 1996, vol. 139, iss. 2, pp. 383–414. DOI: https://doi.org/10.1006/jfan.1996.0090
  6. Agranovsky M. L., Volchkov V. V., Zalcman L. A. Conical injectivity sets for the spherical Radon transform. Bulletin of the London Mathematical Society, 1999, vol. 31, iss. 2, pp. 231–236. DOI: https://doi.org/10.1112/S0024609398005396
  7. Volchkov V. V., Volchkov Vit. V. Conic injectivity sets for the radon transformation on spheres. St. Petersburg Mathematical Journal, 2016, vol. 27, iss. 5, pp. 709–730. DOI: https://doi.org/10.1090/spmj/1413
  8. Selmi B., Nessibi M. M. A local two radii theorem on the Chébli-Trimèche hypergroup. Journal of Mathematical Analysis and Applications, 2007, vol. 329, iss. 1, pp. 163–190. DOI: https://doi.org/10.1016/j.jmaa.2006.06.061
  9. Hörmander L. The analysis of linear partial differential operators II: Differential operators with constant coefficients. Berlin, Springer, 1983. 395 p. (Russ. ed.: Moscow, Mir, 1986. 456 p.).
  10. Zalcman L. Analyticity and the Pompeiu problem. Archive for Rational Mechanics and Analysis, 1972, vol. 47, pp. 237–254. DOI: https://doi.org/10.1007/BF00250628
  11. Levitan B. M. Expansion by Bessel functions into Fourier series and integrals. Uspekhi Matematicheskikh Nauk, 1951, vol. 6, iss. 2, pp. 102–143 (in Russian).
  12. Kipriyanov I. A. Singulyarnye ellipticheskie krayevye zadachi [Singular elliptic boundary value problems]. Moscow, Nauka, Fizmatlit, 1997. 196 p. (in Russian).
  13. Trimèche K. Generalized wavelets and hypergroups. New York, CRC Press, 1997. 364 p.
  14. Volchkov Vit. V., Krasnoschekikh G. V. A refinement of the two-radius theorem on the Bessel – Kingman hypergroup. Mathematical Notes, 2024, vol. 116, pp. 223–237. DOI: https://doi.org/10.1134/S0001434624070174
  15. Volchkova N. P., Volchkov Vit. V. Recovering the Laplacian from centered means on balls and spheres of fixed radius. Issues of Analysis, 2023, vol. 12 (30), iss. 1, pp. 96–117. DOI: https://doi.org/10.15393/j3.art.2023.13290
  16. Bateman H., Erdélyi A. Higher transcendental functions. Vol. 2. New York, McGraw-Hill, 1953. 396 p. (Russ. ed.: Moscow, Nauka, 1974. 295 p.).
  17. Bremermann H. Distributions, complex variables and Fourier transforms. Boston, Addison-Wesley, 1965. 186 p. (Russ. ed.: Moscow, Mir, 1968. 276 p.).
Received: 
19.01.2025
Accepted: 
17.03.2025
Published: 
28.11.2025