Для цитирования:
Вильде М. В., Коссович Л. Ю. Асимптотическая модель дальнего поля волны Рэлея в многослойной пластине // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2011. Т. 11, вып. 4. С. 74-86. DOI: 10.18500/1816-9791-2011-11-4-74-86
Асимптотическая модель дальнего поля волны Рэлея в многослойной пластине
Предложена асимптотическая модель, направленная на описание дальнего поля волны Рэлея в бесконечной многослойной пластине при действии нестационарной поверхностной нагрузки. При выводе уравнений модели используются общие асимптотические принципы. В результате получена система двух одномерных интегродифференциальных уравнений (головная система), описывающая распространение волн Рэлея вдоль поверхностей пластины, и ряд краевых задач для уравнений эллиптического типа, описывающих затухающее волновое поле в каждом из слоев. Головная система является замкнутой и может быть решена отдельно, так что задача по сути сводится к одномерной. При построении модели предполагается, что упругие свойства слоев удовлетворяют следующему условию: скорость той волны Рэлея, на которую ориентирована модель, меньше скоростей волн сдвига во всех слоях.
- Lamb H. On the propagation of tremors over the surface of an elastic solid // Phil. Trans. R. Soc. A203. 1904. P. 1–42 .
- Rayleigh J. W. S. On waves propagated along the plane surface of an elastic solid // Proc. Lond. Math. Soc. 1885. Vol. 17, No 253. P. 4–11.
- Коссович Л. Ю., Кушеккалиев А. Н. Анализ приближений в задаче Лэмба для бесконечного упругого слоя // Известия вузов. Северо-Кавказский регион. Естеств. науки. 2003. No 5. C. 10–22.
- Ewing W. M., Jardetzky W. S., Press F. Elastic waves in layered media. N.Y., 1957.
- Miklowitz J. Elastic wave propagation // In Applied mechanics surveys (Ed. H. N. Abramson, H. Liebowitz, J. M. Crowley, S. Juhasz). Washington D.C., 1966.
- Каплунов Ю. Д., Коссович Л.Ю. Асимптотическая модель для вычисления дальнего поля волны Рэлея в случае упругой полуплоскости // Докл. АН. 2004. Т. 395, No 4. C. 482–484.
- Коссович Л. Ю., Кушеккалиев А. Н. Поле Рэлея в бесконечном упругом слое // Математика. Механика : сб. науч. тр. Саратов, 2003. Вып. 5. С. 159–161.
- Ковалев В. А., Коссович Л.Ю., Таранов О. Г. Дальнее поле волны Рэлея для упругой полуполосы при действии торцевой нагрузки // Изв. РАН. МТТ. 2005. No 5. С. 89–96.
- Коссович Л. Ю., Ковалев В. А., Таранов О. Г. Поле Рэлая в задаче Лэмба для цилиндрической оболочки // Известия вузов. Северо-Кавказский регион. Естеств. науки. Спецвыпуск. 2004. C. 52–54.
- Ковалев В. А., Таранов О. Г. Расчленение нестационарного НДС цилиндрических оболочек при ударных торцевых воздействиях нормального типа // Смешанные задачи механики деформируемого твердого тела : материалы V Рос. конф. с междунар. участием / под ред. акад. Н.Ф. Морозова. Саратов, 2005. С. 78–82.
- Коул Дж. Методы возмущений в прикладной математике. М., 1974. 274 с.
- Гринченко В. Т., Мелешко В. В. Гармонические колебания и волны в упругих телах. Киев, 1981. 284 c.
- Лаврентьев М. А., Шабат Б. В. Методы теории функций комплексного переменного. М., 1987. 688 с.
- Kaplunov J. D., Kossovich L. Yu., Nolde E. V. Dynamics of Thin Walled Elastic Bodies. San Diego, 1998. 226 p.
- 1264 просмотра