Для цитирования:
Ковалёв В. А., Радаев Ю. Н. Связанные термоупругие волны третьего типа заданного азимутального порядка в волноводе с проницаемой для тепла стенкой // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2011. Т. 11, вып. 4. С. 86-108. DOI: 10.18500/1816-9791-2011-11-4-86-108
Связанные термоупругие волны третьего типа заданного азимутального порядка в волноводе с проницаемой для тепла стенкой
Работа посвящена изучению распространения обобщенных связанных термоупругих волн заданного азимутального порядка в длинном цилиндрическом волноводе кругового поперечного сечения. При этом предполагается, что стенка волновода свободна от нагрузок и является проницаемой для тепла. Исследование проводится в рамках теории связанной обобщенной термоупругости третьего типа (GNIII), согласующейся с основными принципами термомеханики. Данная теория сочетает оба известных типа распространения тепла в твердых деформируемых телах: термодиффузионный и волновой. Предельными случаями обобщенной термоупругости типа III являются классическая термоупругость (GNI/CTE) и гиперболическая термоупругость (GNII), которые могут быть сформулированы в терминах классической теории поля. Дифференциальные уравнения поля в этом случае принадлежат гиперболическому аналитическому типу. Методом разделения переменных в связанных уравнениях линейной термоупругости третьего типа получено их замкнутое аналитическое решение, которое удовлетворяет необходимым краевым условиям на боковой стенке волновода, в том числе условию конвективного теплообмена с окружающей средой. Установлено, что краевые условия на поверхности волновода выполняются отдельно для каждой из волн фиксированного азимутального порядка, поэтому волны различного азимутального порядка распространяются в волноводе независимо друг от друга. Для термоупругой волны заданного азимута построен частотный детерминант. Выполнен численный анализ частотного уравнения на предмет поиска его комплексных корней. При этом в частотном уравнении произведено выделение всех возможных однозначных ветвей квадратных радикалов. Детально описана схема локализации корней частотного уравнения и определены волновые числа связанных термоупругих волн, в частности, первого и седьмого азимутального порядков. Приведены результаты численного анализа в случае связанной волны азимутального порядка 70. Обсуждаются различные аспекты численной реализации предлагаемого подхода.
- Ковалев В. А., Радаев Ю. Н. Волновые задачи теории поля и термомеханика. Саратов, 2010. 328 с.
- Ковалев В. А., Радаев Ю. Н. Элементы теории поля : вариационные симметрии и геометрические инварианты. М., 2009. 156 с.
- Ковалев В. А., Радаев Ю. Н. Волновые задачи теории поля и термомеханика // Математическая физика и ее приложения : материалы второй междунар. конф. (под ред. чл.-корр. РАН И. В. Воловича и проф. Ю. Н. Радаева). Самара, 2010. С. 165–166.
- Duhamel J. Second Memoire sur les Phenomenes ́ Thermo-Mecanique // J. de L’Ecole Polytech. 1837. ́ Vol. 15. P. 1–57; Duhamel J. Memoire sur le Calcul des ́ Actions Moleculaires D ́ evelopp ́ ees par les Changements ́ de Temperature dans les Corps Solides // M ́ emoirs ́ par Divers Savants. A l’Acad. Roy. des Sci. de l’Inst. de France. 1838. Vol. 5. P. 440–498; Neumann F. Vorlesungen uber die Theorie der Elasticit ̈ at der festen ̈ Korper und des Licht ̈ athers. Breslau, 1885.
- Лебедев Н. Н. Температурные напряжения в теории упругости. М.; Л., 1937. 110 c.
- Maxwell J. C. On the Dynamical Theory of Gases // Phil. Trans. Royal Soc. Lond. 1867. Vol. 157. P. 49–88.
- Biot M. A. Thermoelasticity and irreversible thermodynamics // J. Appl. Phys. 1956. Vol. 27(3). P. 240–253.
- Joseph D. D., Preziozi L. Heat waves // Rev. Modern Physics. 1989. Vol. 61, No 1. P. 41–73; Joseph D.D., Preziozi L. Addendum to the paper «Heat waves» // Rev. Modern Physics. 1990. Vol. 62, No 2. P. 375–391.
- McNelly T. F., Rogers S. J., Channin D. J., Rollefson R. J., Goubau W. M., Schmidt G. E., Krumhansl J. A., Pohl R. O. Heat pulses in NaF: Onset of second sound // Phys. Rev. 1970. Vol. 24(3). P. 100–102.
- Jackson H. E., Walker C. T., McNelly T. F. Second sound in NaF // Phys. Rev. Letters. 1970. Vol. 25(1). P. 26–28.
- Rogers S. J. Transport of heat and approach to second sound in some isotopically pure Alkali-Halide crystals // Phys. Rev. B. 1971. Vol. 3(4). P. 1440–1457.
- Pohl D. W., Irniger V. Observation of second sound in NaF by means of light scattering // Phys. Rev. Letters. 1976. Vol. 36(9). P. 480–483.
- Hardy R. J., Jaswal S. S. Velocity of second sound in NaF // Phys. Rev. B. 1971. Vol. 3(12). P. 4385–4387.
- Narayanamurti V., Dynes R. C. Observation of second sound in Bismuth // Phys. Rev. Letters. 1972. Vol. 28. P. 1461–1464.
- Lord H., Shulman Y. A generalized dynamical theory of thermoelasticity // J. Mech. Phys. Solid. 1967. Vol. 15. P. 299–309.
- Cattaneo C. Sur une forme de l’equation de la chaleur ́ eliminant le paradoxe d’une propagation instantan ́ ee // ́ J. of Comptes-Rendus Hebdomadaires des Seances de\ l’Academie des Sciences. 1958. Vol. 247. P. 431–433. ́
- Vernotte P. Les paradoxes de la theorie continue ́ de l’equation de la chaleur // J. of Comptes-Rendus ́ Hebdomadaires des Seances de l’Academie des Sciences. ́ 1958. Vol. 246. P. 3154–3155.
- Лыков А. В. Теория теплопроводности. М., 1967. 600 c.
- Green A. E., Lindsay K. A. Thermoelasticity // J. Elasticity. 1972. Vol. 2. P. 1–7.
- Green A. E., Naghdi P. M. On undamped heat waves in an elastic solid // J. Thermal Stresses. 1992. Vol. 15. P. 253–264.
- Green A. E., Naghdi P. M. Thermoelasticity without energy dissipation // J. Elasticity. 1993. Vol. 31. P. 189– 208.
- Новацкий В. Динамические задачи термоупругости. М., 1970. 256 c.
- Maugin G. A. Towards an analytical mechanics of dissipative materials // Rend. Sem. Mat. Univ. Pol. Torino. 2000. Vol. 58, No 2. Geom., Cont. and Micros., II. P. 171–180.
- Maugin G. A., Kalpakides V. K. The slow march towards an analytical mechanics of dissipative materials // Technische Mechanik. 2002. B. 22, H. 2. S. 98–103.
- Maugin G. A., Kalpakides V. K. A Hamiltonian formulation for elasticity and thermoelasticity // J. Phys. A: Math. Gen. 2002. Vol. 35. P. 10775–10788.
- Kalpakides V. K., Maugin G. A. Canonical formulation and conservation laws of thermoelasticity // Reports in Mathematical Physics. 2004. Vol. 53. P. 371–391.
- Puri P., Jordan P. M. On the propagation of plane waves in type-III thermoelastic media // Proc. Royal Soc. Lond. A. 2004. Vol. 460. P. 3203—3221.
- Ковалев В. А., Радаев Ю. Н. Волновые числа плоских GNIII-термоупругих волн и неравенства, обеспечивающие их нормальность // Изв. Сарат. ун-та. Нов. сер. 2010. Т. 10. Сер. Математика. Механика. Информатика, вып. 3. С. 46–53.
- Dhaliwal R. S., Majumdar S. R., Wang J. Thermoelastic waves in an infinite solid caused by a line heat source // Intern. J. Math. & Math. Sci. 1997. Vol. 20, No 2. P. 323–334.
- Ковалев В. А., Радаев Ю. Н. Распространение связанных гармонических GNIII-термоупругих волн в длинном цилиндрическом волноводе // Вестн. Чувашского гос. пед. у-та им. И.Я. Яковлева. Сер. Механика предельного состояния. 2010. No 2(8), ч. 2. С. 207–255.
- Ковалев В. А., Радаев Ю. Н., Романов А. Е. Прохождение теплового GNIII-волнового сигнала с высокой окружной гармоникой через цилиндрический волновод //Актуальные проблемы прикладной математики, информатики и механики : сб. тр. междунар. конф., посвящ. 80-летию д-ра физ.-мат. наук, проф. Д. Д. Ивлева. Воронеж, 2010. С. 173–180.
- 1325 просмотров