Для цитирования:
Iliashenko O. Y., Lukyanchenko E. L. Possibilities of using computer vision for data analytics in medicine [Ильяшенко О. Ю., Лукьянченко Е. Л. Возможности применения компьютерного зрения для аналитики данных в медицине] // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2022. Т. 22, вып. 2. С. 224-232. DOI: 10.18500/1816-9791-2022-22-2-224-232, EDN: MCSLKQ
Possibilities of using computer vision for data analytics in medicine
[Возможности применения компьютерного зрения для аналитики данных в медицине]
В статье рассматриваются возможности использования технологий искусственного интеллекта, а именно компьютерного зрения, в сфере медицины. Актуальность темы обусловлена растущей нагрузкой на медицинский персонал и на медицинские учреждения в связи с увеличением числа пожилых людей и пациентов с хроническими заболеваниями, а также непредвиденными обстоятельствами, как, например, пандемия коронавируса SARS-CoV-2 в 2019–2021 гг. Кроме того, многие медицинские учреждения заинтересованы в предоставлении услуг высокого качества, повышении лояльности и увеличении числа постоянных пациентов, в связи с чем ощущают необходимость во внедрении новейших технологий и хотят следовать трендам стратегического развития. В статье описывается, как лечащий врач может использовать предлагаемые искусственным интеллектом решения в процессе своей работы для получения более точного диагноза и экономии времени на ознакомление с анамнезом пациента. Предложена ИТ- и технологическая архитектура медицинской организации, использующей компьютерное зрение в своей работе, созданная на основе референтной модели. Архитектура подразумевает использование облачной инфраструктуры, специализированного ПО и предусматривает как внедрение новых типов оборудования, например 3D камер, датчиков визуализации, так и использование традиционного оборудования: аппарата УЗИ, рентген-оборудования, аппарата МРТ.
- Kaul V., Enslin S., Gross S. A. History of artificial intelligence in medicine. Gastrointestinal Endoscopy, 2020, vol. 92, iss. 4, pp. 807–812. https://doi.org/10.1016/j.gie.2020.06.040
- The future of artificial intelligence in health care. Emerging applications of AI in health care. Deloitte. Available at: https://www2.deloitte.com/us/en/pages/life-sciences-and-health-care/articles/future-of-artificial-intelligence-in-health-care.html (accessed 7 September 2021).
- Khemasuwan D., Sorensen J. S., Colt H. G. Artificial intelligence in pulmonary medicine: Computer vision, predictive model and COVID-19. European Respiratory Review, 2020, vol. 29, Art. 200181. https://doi.org/10.1183/16000617.0181-2020
- Ilin I. V., Lepekhin A. A., Ershova A. S., Borremans A. D. IT and technological architecture of healthcare organization. IOP Conference Series: Materials Science and Engineering, 2020, vol. 1001, Art. 012141. https://doi.org/10.1088/1757-899X/1001/1/012141
- Il’in I. V., Il’yashenko O. Yu., Il’yashenko V. M. Architectural approach to the medical organization development in a digitalized healthcare environment. Journal of Management Studies, 2019, vol. 5, no. 1, pp. 37–47 (in Russian).
- Vodolazsky K. D., Ilin I. V. Organization of information interaction of the medical organization with customers and resource providers. Journal of Economy and Entrepreneurship, 2021, no. 3 (128), pp. 920–929 (in Russian). https://doi.org/10.34925/EIP.2021.128.3.185
- LeCun Y., Bengio Y., Hinton G. Deep learning. Nature, 2015, vol. 521, no. 7553, pp. 436–444. https://doi.org/10.1038/nature14539
- Amin S. U., Hossain M. S., Muhammad G., Alhussein M., Rahman M. A. Cognitive smart healthcare for pathology detection and monitoring. IEEE Access, 2019, vol. 7, pp. 10745–10753. https://doi.org/10.1109/ACCESS.2019.2891390
- Dubgorn A., Svetunkov S., Borremans A. Features of the functioning of a geographically distributed medical organization in Russia. E3S Web of Conferences, 2020, vol. 217, Art. 06014. https://doi.org/10.1051/e3sconf/202021706014
- Mahmoodpour M., Lobov A., Hayati S., Pastukhov A. An affordable deep learning-based solution to support pick and place robotic tasks. Instrumentation Engineering, Electronics and Telecommunications – 2019: Proceedings of the V International Forum (November 20–22, 2019, Izhevsk, Russian Federation). Kalashnikov Izhevsk State Technical University Publ., 2019, pp. 66–75. https://doi.org/10.22213/2658-3658-2019-66-75
- Gauss Surgical. Available at: https://www.gausssurgical.com/ (accessed 7 September 2021).
- Ilin I., Iliashenko O., Iliashenko V. An architectural approach to managing the digital transformation of a medical organization. In: T. Devezas, J. Leitao, A. Sarygulov, eds. The Economics of Digital Transformation. Studies on Entrepreneurship, Structural Change and Industrial Dynamics. Springer, Cham, 2021, pp. 227–249. https://doi.org/10.1007/978-3-030-59959-1_15
- Ilyin I. V., Ilyashenko V. M. Formation of requirements for a reference architectural model for digital transformation of a medical organization. Scientific Bulletin of the Southern Institute of Management, 2018, vol. 4, pp. 82–88 (in Russian). https://doi.org/10.31775/2305-3100-2018-4-82-88
- Iliashenko O., Lukianchenko E., Lohyeeta N. A selection approach to the criteria for evaluating cloud platforms for conducting IT projects. DTMIS ’20: Proceedings of the International Scientific Conference — Digital Transformation on Manufacturing, Infrastructure and Service. New York, NY, USA, Association for Computing Machinery, 2020, Art. 21. https://doi.org/10.1145/3446434.3446445
- Bhattad P., Jain V. Artificial intelligence in modern medicine — the evolving necessity of the present and role in transforming the future of medical care. Cureus, 2020, vol. 12, no. 5, Art. e8041. https://doi.org/10.7759/cureus.8041
- Gao J., Yang Y., Lin P., Park D. S. Computer vision in healthcare applications. Journal of Healthcare Engineering, 2018, vol. 2018, Art. 5157020. https://doi.org/10.1155/2018/5157020
- 1896 просмотров