For citation:
Chumachenko S. A. Binary basic splines in MRA. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2021, vol. 21, iss. 4, pp. 458-471. DOI: 10.18500/1816-9791-2021-21-4-458-471, EDN: XBGXJS
Binary basic splines in MRA
$B$-splines were introduced by Carry and Schoenberg. Constructed on a uniform mesh and defined in terms of convolutions, such splines generate a Riesz MRA. We constructed splines $varphi_n$, where $n$ is the order of integration of the Walsh function with the number $2^n - 1$. We called these splines binary basic splines. We know that binary basic splines form a basis in the space of functions that are continuous on the segment $[0, 1]$ and $0$ outside of it. We proved that binary basic splines are a scaling function and generate an MRA of $(V_n)$ which is not a Riesz MRA. The order of approximation was determined by subspaces from Sobolev spaces.
- Schoenberg I. J. On spline functions (with a supplement by T. N. E. Greville). In: O. Shisha, ed. Inequalities I. New York, Academic Press, 1967, pp. 255–291.
- de Boor C. A Practical Guide to Spline. (American Mathematical Society, vol. 27). New York, Springer-Verlag, 1978. 348 p. (Russ. ed.: Moscow, Radio i svyaz’, 1985. 304 p.).
- Ahlberg J. H., Nilson E. N., Walsh J. L. The Theory of Splines and Their Applications. (Mathematics in Science and Engineering: A Series of Monographs and Textbooks, Vol. 38). Academic Press, 1967. 296 p. (Russ. ed.: Moscow, Mir, 1972. 320 p.).
- Kashin B. S., Saakian A. A. Ortogonal’nye riady [Ortogonal Series]. Moscow, AFC, 1999. 550 p. (in Russian).
- Novikov I. Ya., Protasov V. Yu., Skopina M. A. Wavelet Theory. (Translations of Mathematical Monographs, vol. 239). Providence, American Mathematical Society, 2011. 506 p. (Russ. ed.: Moscow, Fizmatlit, 2006. 616 p.).
- Battle G. A block spin construction of ondelettes. Part 1: Lemarie functions. Communications in Mathematical Physics, 1987, vol. 110, iss. 4, pp. 601–615. https://doi.org/10. 1007/BF01205550
- Lemarie P.-G., Meyer Y. Ondelettes et bases Hilbertiennes. Revista Matematica Iberoamericana, 1986, vol. 2, iss. 1–2, pp. 1–18.
- Chumachenko S. A. One analogue of Faber – Schauder system. Trudy matematicheskogo tsentra imeni N. I. Lobachevskogo. Vol. 53. Kazan, 2016, pp. 163–164 (in Russian).
- Chumachenko S. A. Binary-scaling spline functions. Trudy matematicheskogo tsentra imeni N. I. Lobachevskogo. Vol. 54. Kazan, 2017, pp. 403 (in Russian).
- Lukomskii S. F., Mushko M. D. On binary B-splines of second order. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2018, vol. 18, iss. 2, pp. 172–182 (in Russian). https://doi.org/10.18500/1816-9791-2018-18-2-172-182
- Lukomskii S. F., Terekhin P. A., Chumachenko S. A. Rademacher chaoses in problems of constructing spline affine systems. Mathematical Notes, 2018, vol. 103, iss. 6, pp. 863–874. https://doi.org/10.4213/mzm11654
- Chumachenko S. A. Smooth approximation in C[0, 1]. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2020, vol. 20, iss. 3, pp. 326–342 (in Russian). https://doi.org/10.18500/1816-9791-2020-20-3-326-342
- Zhao H. Mathematics in Image Processing. IAS/Park City Mathematics Series, 2013, vol. 19. 245 p. https://doi.org/10.1090/pcms/019
- 1341 reads