Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Sadyrin E. V., Nikolaev A. L., Evsyukov A. P., Nizhnik D. A., Vasiliev A. S. Characterization of properties for modern dental materials and bordering tissues. Part 1. Mechanical properties. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2025, vol. 25, iss. 4, pp. 555-565. DOI: 10.18500/1816-9791-2025-25-4-555-565, EDN: SRTEFP

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
28.11.2025
Full text:
(downloads: 29)
Language: 
English
Heading: 
Article type: 
Article
UDC: 
531.7
EDN: 
SRTEFP

Characterization of properties for modern dental materials and bordering tissues. Part 1. Mechanical properties

Autors: 
Sadyrin Evgeniy V., Don State Technical University
Nikolaev Andrey L., Don State Technical University
Evsyukov Alexander P., Don State Technical University
Nizhnik Daria A., Don State Technical University
Vasiliev Andrey S. , Don State Technical University
Abstract: 

In the present paper, an ex vivo nanoindentation study of the mechanical properties of fillings made of composite resin and glass ionomer cement, as well as infiltrated enamel and tissues in their vicinity, was carried out, followed by a comparison of the results with the properties of the sound tissues. For a more in-depth interpretation of the obtained experimental data, optical images of the sample surface structure were obtained. Composite fillings have been shown to be superior to glass ionomer ones due to greater similarity in mechanical properties to the sound enamel and fewer internal structure artifacts. The possibility of the polymerization stress appearing in dentine adjacent to the filling was demonstrated. Pathologically altered demineralized enamel treated with polymer infiltrant, despite a slight decrease in the values of properties compared to sound tissue, turned out to be generally close to it both in terms of the mechanical characteristics, which indicates the high potential for the use of polymer infiltration in dental practice for the treatment of early caries.

Acknowledgments: 
This work was supported by the grant of the Russian Science Foundation (project No. 25-29-00829, https://rscf.ru/en/project/25-29-00829/). The authors thank S. Yu. Maksyukov for assistance in performing ex vivo sealing of the samples. Nanoindentation was carried out using the equipment of the Resource Center for Collective Use of the Scientific and Educational Center for Functional Gradient Materials of Don State Technical University (RCCP DSTU).
References: 
  1. GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. The Lancet, 2020, vol. 396, iss. 10258, pp. 1204–1222. DOI: https://doi.org/10.1016/S0140-6736(20)30925-9
  2. Bui F. Q., Almeida-da-Silva C. L. C., Huynh B., Trinh A., Liu J., Woodward J., Osadi H., Ojcius D. M. Association between periodontal pathogens and systemic disease. Biomedical Journal, 2019, vol. 42, iss. 1, pp. 27–35. DOI: https://doi.org/10.1016/j.bj.2018.12.001
  3. Matsumoto N., Kadowaki T., Tsukahara H., Yorifuji T. Association between dental caries and influenza infection in children: A Japanese nationwide population-based study. Children, 2021, vol. 8, iss. 9, art. 780. DOI: https://doi.org/10.3390/children8090780
  4. Balan P., Udawatte N., Seneviratne C. J. Human microbiome in health and disease with reference to dysbiosis in dental caries and periodontal diseases. Pathological Basis of Oral and Maxillofacial Diseases, Wiley, 2025, pp. 293–309. DOI: https://doi.org/10.1002/9781119989233.ch18
  5. Larnani S., Song Y., Kim S., Park Y.-S. Examining enamel-surface demineralization upon exposure to acidic solutions and the remineralization potential of milk and artificial saliva. Odontology, 2025, vol. 113, pp. 201–212. DOI: https://doi.org/10.1007/s10266-024-00960-y
  6. Sadyrin E. V., Kislyakov E. A., Karotkiyan R. V., Yogina D. V., Drogan E. G., Swain M. V., Maksyukov S. Yu., Nikolaev A. L., Aizikovich S. M. Influence of citric acid concentration and etching time on enamel surface roughness of prepared human tooth: In vitro study. In: Altenbach H., Brünig M., Kowalewski Z. (eds.) Plasticity, Damage and Fracture in Advanced Materials. Advanced Structured Materials, vol. 121. Cham, Springer, 2020, pp. 135–150. DOI: https://doi.org/10.1007/978-3-030-34851-9_8
  7. Sadyrin E. V., Yogina D. V., Vasiliev A. S., Aizikovich S. M. Evaluation of the influence of white spot lesion on the mechanical properties of human tooth enamel and dentine. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2022, vol. 22, iss. 3, pp. 346–359. DOI: https://doi.org/10.18500/1816-9791-2022-22-3-346-359
  8. Jamloo H., Majidi K., Noroozian N., Zarezadeh M., Alomar E., Nucci L., Jamilian A. Effect of fluoride on preventing orthodontics treatments-induced white spot lesions: An umbrella metaanalysis. Clinical and Investigative Orthodontics, 2024, vol. 83, iss. 2, pp. 53–60. DOI: https://doi.org/10.1080/27705781.2024.2342732
  9. Alwin R. M. I., Ragavane P. Nanosilver fluoride: A potential game changer in preventive and special care dentistry. European Archives of Paediatric Dentistry, 2025, vol. 26, pp. 817–818. DOI: https://doi.org/10.1007/s40368-024-00998-0
  10. Theodory T. G., Kolker J. L., Vargas M. A., Maia R. R., Dawson D. V. Masking and penetration ability of various sealants and ICON in artificial initial caries lesions in vitro. The Journal of Adhesive Dentistry, 2019, vol. 21, iss. 3, pp. 265–272. DOI: https://doi.org/10.3290/j.jad.a42520
  11. de Mattos Pimenta Vidal C., LaRoy C., Toledo D. C., da Mata Almeida L., Qian F., Hilgert L. A., Bedran-Russo A. K. Hydroxy acids for adhesion to enamel and dentin: Long-term bonding performance and effect on dentin biostability. Journal of Dentistry, 2021, vol. 107, art. 103613. DOI: https://doi.org/10.1016/j.jdent.2021.103613
  12. Maas M., Boldt J., Soliman S., Meyer-Lueckel H., Krastl G., Krug R. Resin infiltration of trauma-induced enamel cracks — A proof-of-concept. Journal of Dentistry, 2021, vol. 153, art. 105552. DOI: https://doi.org/10.1016/j.jdent.2024.105552
  13. Başaran G., Veli I., Başaran E. G. Non-Cavitated approach for the treatment of white spot lesions: A case report. International Dental Research, 2011, vol. 1, iss. 2, pp. 65–69. DOI: https://doi.org/10.5577/intdentres.2011.vol1.no2.5
  14. Kim S., Kim E.-Y., Jeong T.-S., Kim J.-W. The evaluation of resin infiltration for masking labial enamel white spot lesions. International Journal of Paediatric Dentistry, 2011, vol. 21, iss. 4, pp. 241–248. DOI: https://doi.org/10.1111/j.1365-263X.2011.01126.x
  15. Oliver W. C., Pharr G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 1992, vol. 7, pp. 1564–1583. DOI: https://doi.org/10.1557/JMR.1992.1564
  16. Sadyrin E. V., Yogina D. V., Swain M. V., Maksyukov S. Yu., Vasiliev A. S. Efficacy of dental materials in terms of apparent mineral density restoration: Composite resin, glass ionomer cement and infiltrant. Composites Part C: Open Access, 2021, vol. 6, art. 100192. DOI: https://doi.org/10.1016/j.jcomc.2021.100192
  17. Benjwal S., Goswami M., Saxena A., Kurien R. S., Mushtaq A. Comparative evaluation of bond strength of three self-adhering flowable composites to sound and demineralized enamel — An in vitro study. Journal of Global Oral Health, 2021, vol. 4, iss. 1, pp. 3–7. DOI: https://doi.org/10.25259/JGOH_60_2020
  18. Petrović B., Marković D., Kojić S., Perić T., Dubourg G., Drljaca M., Stojanović G. Characterization of glass ionomer cements stored in various solutions. Materiali in Tehnologije, 2019, vol. 53, iss. 2, pp. 285–293. DOI: https://doi.org/10.17222/mit.2018.159
  19. Zelentsov V. B., Sadyrin E. V., Mitrin B. I., Swain M. V. Mathematical tools for recovery of the load on the fissure according to the micro-CT results. Journal of the Mechanical Behavior of Biomedical Materials, 2023, vol. 138, art. 105625. DOI: https://doi.org/10.1016/j.jmbbm.2022.105625
  20. Giachetti L., Scaminaci Russo D., Bambi C., Grandini R. A review of polymerization shrinkage stress: Current techniques for posterior direct resin restorations. The Journal of Contemporary Dental Practice, 2006, vol. 7, iss. 4, pp. 79–88. DOI: https://doi.org/10.5005/jcdp-7-4-79
  21. Cheetham J. J., Palamara J. E. A., Tyas M. J., Burrow M. F. A comparison of resin-modified glass-ionomer and resin composite polymerisation shrinkage stress in a wet environment. Journal of the Mechanical Behavior of Biomedical Materials, 2014, vol. 29, pp. 33–41. DOI: https://doi.org/10.1016/j.jmbbm.2013.07.003
  22. Dias G. F., Chibinski A. C. R., dos Santos F. A., Hass V., Alves F. B. T., Wambier D. S. The hardness and chemical changes in demineralized primary dentin treated by fluoride and glass ionomer cement. Revista de Odontologia da UNESP, 2016, vol. 45, iss. 1, pp. 33–40. DOI: https://doi.org/10.1590/1807-2577.08815
Received: 
19.02.2025
Accepted: 
18.06.2025
Published: 
28.11.2025