Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)

For citation:

Tebyakin A. D., Krysko A. V., Zhigalov M. V., Krysko V. A. Elastic-plastic deformation of nanoplates. The method of variational iterations (extended Kantorovich method). Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2022, vol. 22, iss. 4, pp. 494-505. DOI: 10.18500/1816-9791-2022-22-4-494-505, EDN: KFJVBH

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 422)
Article type: 

Elastic-plastic deformation of nanoplates. The method of variational iterations (extended Kantorovich method)

Tebyakin Alexey D., Lavrentiev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences
Krysko Anton V., Lavrentiev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences
Zhigalov Maxim Viktorovich, Lavrentiev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences
Krysko Vadim A., Lavrentiev Institute of Hydrodynamics of the Siberian Branch of the Russian Academy of Sciences

In this paper, a mathematical model is constructed based on the deformation theory of plasticity for studying the stress-strain state of Kirchhoff nanoplates (nanoeffects are taken into account according to the modified moment theory of elasticity). An economical and correct iterative method for calculating the stress-strain state of nanoplates has been developed — the method of variational iterations (the extended Kantorovich method). The method of variational iterations (the extended Kantorovich method) has the advantage over the Bubnov – Galerkin or Ritz method in that it does not require specifying a system of approximating functions satisfying boundary conditions, because the method of variational iterations builds a system of approximating functions at each iteration, which follows from solving an ordinary differential equation after applying the Kantorovich procedure. The correctness of the method is ensured by the convergence theorems of the method of variable elasticity parameters  by I. I. Vorovich,  Yu. P. Krasovsky and the convergence theorems of the method of variational iterations  by V. A. Krysko,  V. F. Kirichenko. In addition, the reliability of the solutions for elastic Kirchhoff nanoplates obtained using the variational iteration method is ensured by comparison with the exact Navier solution and solutions using Bubnov – Galerkin methods in higher approximations, finite differences and finite elements. The developed method and the methodology for calculating elastic-plastic deformation of Kirchhoff nanoplates, which is based on this method, are effective in terms of machine time costs compared with the methods of Bubnov – Galerkin in higher approximations, finite differences, Kantorovich – Vlasov, Weindiner and especially finite elements. The influence of the nano coefficient, the types of dependences of strain intensity (stress intensity on the elastic-plastic behavior of the nanoplates) has been studied.

The work was supported by the Russian Science Foundation (project No. 22-11-00160).
  1. Kiener D., Motz C., Schobert T., Jenko M., Dehm G. Determination of mechanical properties of copper at the micron scale. Advanced Engineering Materials, 2006, vol. 8, iss. 11, pp. 1119–1125. https://doi.org/10.1002/adem.200600129
  2. Huber N., Nix W., Gao H. Identification of elastic-plastic material parameters from pyramidal indentation of thin films. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 2002, vol. 458, pp. 1593–1620. https://doi.org/10.1098/rspa.2001.0927
  3. Ristinmaa M., Vecchi M. Use of couple-stress theory in elasto-plasticity. Computer Methods in Applied Mechanics and Engineering, 1996, vol. 136, iss. 3–4, pp. 205–224. https://doi.org/10.1016/0045-7825(96)00996-6
  4. Darvishvand A., Zajkani A. Strain gradient micromechanical modeling of substrate–supported crystalline microplates subjected to permanent in-plane and out-of-plane tractions. Mechanics Based Design of Structures and Machines, 2021, iss. 7, pp. 969–985. https://doi.org/10.1080/15397734.2019.1705167
  5. Darvishvand A., Zajkani A. Comparative modeling of power hardening micro-scale metallic plates based on lower and higher-order strain gradient plasticity theories. Metals and Materials International, 2021, vol. 27, iss. 6, pp. 1392–1402. https://doi.org/10.1007/s12540-019-00524-8
  6. Tun M. A. Plastic buckling of moderately thick annular plates. International Journal of Structural Stability and Dynamics, 2005, vol. 5, iss. 3, pp. 337–357. https://doi.org/10.1142/S0219455405001611
  7. Lanzoni L., Radi E., Nobili A. Ultimate carrying capacity of elastic-plastic plates on a Pasternak foundation. Journal of Applied Mechanics, 2014, vol. 81, iss. 5, 051013-1. https://doi.org/10.1115/1.4026190
  8. Schunck T. E. Zur Knickfestigkeit schwach gekrummter zylindrischer Schalen. Ingenieur-Archiv, 1933, vol. 4, pp. 394–414 (in German). https://doi.org/10.1007/BF02081563
  9. Zhukov E. E. Variational method of successive approximations to the calculation of thin rectangular plates. In: A. P. Rzhanitsyn (ed.) Raschet tonkostennykh prostranstvennykh konstruktsiy [Calculation of Thin-Walled Spatial Structures]. Мoscow, Stroyizdat, 1964, pp. 27–35 (in Russian).
  10. Kerr A. D. An extended Kantorovich method for solution of eigenvalue problem. International Journal of Solids and Structures, 1969, vol. 5, iss. 6, pp. 559–572. https://doi.org/10.1016/0020-7683(69)90028-6
  11. Yuan S., Jin Y. Computation of elastic buckling loads of rectangular thin plates using the extended Kantorovich method. Composite Structures, 1998, vol. 66, iss. 6, pp. 861–867. https://doi.org/10.1016/S0045-7949(97)00111-9
  12. Shufrin I., Rabinovitch O., Eisenberger M. Buckling of symmetrically laminated rectangular plates with general boundary conditions — a semi analytical approach. Composite Structures, 2008, vol. 82, iss. 4, pp. 521–537. https://doi.org/10.1016/j.compstruct.2007.02.003
  13. Eisenberger M., Shufrin I. The extended Kantorovich method for vibration analysis of plates. In: N. E. Shanmugam, Chieng Ming Wang (eds.) Analysis and Design of Plated Structures. Cambridge : Woodhead Publ., 2007. Vol. 1. Stability, pp. 192–218. https://doi.org/10.1533/9781845692292.192
  14. Awrejcewicz J., Krysko-jr. V. A., Kalutsky L. A., Zhigalov M. V., Krysko V. A. Review of the methods of transition from partial to ordinary differential equations: from macroto nano-structural dynamics. Archives of Computational Methods in Engineering, 2021, vol. 28, pp. 4781–4813. https://doi.org/10.1007/s11831-021-09550-5
  15. Kirichenko V. F., Krysko V. A. Method of variational iterations in the theory of plates and its substantiation. Prikladnaya mekhanika [Applied Mechanics], 1981, vol. 17, iss. 4, pp. 71–76 (in Russian).
  16. Krysko A. V., Awrejcewicz J., Zhigalov M. V., Krysko V. A. On the contact interaction between two rectangular plates. Nonlinear Dynamics, 2016, vol. 85, pp. 2729–2748. https://doi.org/10.1007/s11071-016-2858-2
  17. Awrejcewicz J., Krysko V. A., Zhigalov M. V., Krysko A. V. Contact interaction of two rectangular plates made from different materials with an account of physical nonlinearity. Nonlinear Dynamics, 2018, vol. 91, pp. 1191–1211. https://doi.org/10.1007/s11071-017-3939-6
  18. Awrejcewicz J., Krysko-jr V. A., Kalutsky L. A., Krysko V. A. Computing static behavior of flexible rectangular von Karman plates in fast and reliable way. International Journal of Non-Linear Mechanics, 2022, vol. 146, 104162. https://doi.org/10.1016/j.ijnonlinmec.2022.104162
  19. Awrejcewicz J., Krysko A. V., Smirnov A., Kalutsky L. A., Zhigalov M. V., Krysko V. A. Mathematical modeling and methods of analysis of generalized functionally gradient porous nanobeams and nanoplates subjected to temperature field. Meccanica, 2022, vol. 57, pp. 1591–1616. https://doi.org/10.1007/s11012-022-01515-7
  20. Yang F., Chong A. C. M., Lam D. C. C., Tong P. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 2002, vol. 39, iss. 10, pp. 2731–2743. https://doi.org/10.1016/S0020-7683(02)00152-X
  21. Vorovich I. I., Krasovsky Yu. P. On the method of elastic solutions. Doklady Mathematics, 1959, vol. 126, iss. 4, pp. 740–743 (in Russian).
  22. Prandtl L. Ein Gedankenmodell zur kinetischen Theorie der festen Korper. ZAMM: Zeitschrift Fur Angewandte Mathematik Und Mechanik, 1928, vol. 8, iss. 2, pp. 85– 106 (in German). https://doi.org/10.1002/zamm.19280080202
  23. Ohashi Y., Murakami S. The elasto-plastic bending of a clamped thin circular plate. In: H. Gortler (ed.) Applied Mechanics. Berlin, Heidelberg, Springer, 1966. Vol. 1, pp. 212–223. https://doi.org/10.1007/978-3-662-29364-5_25
  24. Temperature coefficient of linear expansion of steel. Thermalinfo. Available at: http://thermalinfo.ru/svojstva-materialov/metally-i-splavy/temperaturnyj-koeffitsient-linejnogo-rasshireniya-stali (accessed 3 August 2022) (in Russian).
  25. Birger I. A. Some general methods for solving problems in the theory of plasticity. Prikladnaya matematika i mekhanika [Applied Mathematics and Mechanics], 1951, vol. 15, iss. 6, pp. 765–770 (in Russian).
  26. Kantorovich L. V., Krylov V. I. Priblizhennye metody vysshego analiza [Approximate Methods of Higher Analysis]. Moscow, Fizmatgiz, 1962. 708 p. (in Russian).
  27. Vlasov V. V. Obshchaia teoriya obolochek [General Shell Theory]. Moscow, Gostekhizdat, 1949. 784 p. (in Russian).
  28. Weindiner A. I. On a new form of Fourier series and the choice of the best Fourier polynomials. Computational Mathematics and Mathematical Physics, 1967, vol. 7, iss. 1, pp. 240–251. https://doi.org/10.1016/0041-5553(67)90076-6