Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)

For citation:

Bazilevskiy M. P. Multi-criteria approach to pair-multiple linear regression models constructing. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2021, vol. 21, iss. 1, pp. 88-99. DOI: 10.18500/1816-9791-2021-21-1-88-99

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
Full text:
(downloads: 1286)
Article type: 

Multi-criteria approach to pair-multiple linear regression models constructing

Bazilevskiy Mikhail P., Irkutsk State Transport University

A pair-multiple linear regression model which is a synthesis of Deming regression and multiple linear regression model is considered. It is shown that with a change in the type of minimized distance, the pair-multiple regression model transforms smoothly from the pair model into the multiple linear regression model. In this case, pair-multiple regression models retain the ability to interpret the coefficients and predict the values of the explained variable. An aggregated quality criterion of regression models based on four well-known indicators: the coefficient of determination, Darbin – Watson, the consistency of behaviour and the average relative error of approximation is proposed. Using this criterion, the problem of multi-criteria construction of a pair-multiple linear regression model is formalized as a nonlinear programming problem. An algorithm for its approximate solution is developed. The results of this work can be used to improve the overall qualitative characteristics of multiple linear regression models.

  1. Montgomery D. C., Peck E. A., Vining G. G. Introduction to Linear Regression Analysis. Wiley, 2012. 672 p.
  2. Kleinbaum D. G., Kupper L. L., Nizam A., Rosenberg E. S. Applied Regression Analysis and Other Multivariable Methods. Cengage Learning, 2013. 1072 p.
  3. Harrell Jr., Frank E. Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis. Springer Series in Statistics, 2015. 582 p.
  4. Kuhn M., Johnson K. Applied Predictive Modeling. Springer, 2018. 600 p.
  5. Gillard J. An overview of linear structural models in errors in variables regression. REVSTAT – Statistical Journal, 2010, vol. 8, no. 1, pp. 57–80.
  6. Xu K., Ma Y., Wang L. Instrument assisted regression for errors in variables models with binary response. Scandinavian Journal of Statistics, 2015, vol. 42, iss. 1, pp. 104–117. https://doi.org/10.1111/sjos.12097
  7. Rudelson M., Zhou S. Errors-in-variables models with dependent measurements. Electronic Journal of Statistics, 2017, vol. 11, no. 1, pp. 1699–1797. https://doi.org/10.1214/17-EJS1234
  8. Gospodinov N., Komunjer I., Ng S. Simulated minimum distance estimation of dynamic models with errors-in-variables. Journal of Econometrics, 2017, vol. 200, iss. 2, pp. 181– 193. https://doi.org/10.1016/j.jeconom.2017.06.004
  9. Soderstrom T., Soverini U. Errors-in-variables identification using maximum likelihood estimation in the frequency domain. Automatica, 2017, vol. 79, pp. 131–143. https://doi.org/10.1016/j.automatica.2017.01.016
  10. Bianco A. M., Spano P. M. Robust estimation in partially linear errors-in-variables models. Computational Statistics & Data Analysis, 2017, vol. 106, pp. 46–64. https://doi.org/10.1016/j.csda.2016.09.002
  11. Deming W. E. Statistical Adjustment of Data. Wiley, 1943. 273 p.
  12. Wu C., Yu J. Z. Evaluation of linear regression techniques for atmospheric applications: The importance of appropriate weighting. Atmospheric Measurement Techniques, 2018, vol. 11, pp. 1233–1250. https://doi.org/10.5194/amt-11-1233-2018
  13. Henderson C. M., Shulman N. J., MacLean B., MacCoss M. J., Hoofnagle A. N. Skyline performs as well as vendor software in the quantitative analysis of serum 25-hydroxy vitamin D and vitamin D binding globulin. Clinical Chemistry, 2018, vol. 64, iss. 2, pp. 408–410. https://doi.org/10.1373/clinchem.2017.282293
  14. Reverter-Branchat G., Bosch J., Vall J., Farre M., Papaseit E., Pichini S., Segura J. Determination of recent growth hormone abuse using a single dried blood spot. Clinical Chemistry, 2016, vol. 62, iss. 10, pp. 1353–1360. https://doi.org/10.1373/clinchem.2016.257592
  15. Bazilevskiy M. P. Synthesis of the multiple linear regression and deming regression model. Informatsionnye tekhnologii v modelirovanii i upravlenii: podkhody, metody, resheniya: materialy II Vserossiiskoi nauchnoi konferentsii s mezhdunarodnym uchastiem [Information Technologies in Modeling and Management: Approaches, Methods, Solutions: Materials of the II All-Russian Scientific Conference with International Participation: in 2 pt.]. Tolyatti, 2019, pt. 1, pp. 64–69 (in Russian).
  16. Bazilevskiy M. P. Synthesis of multiple linear regression and Deming regression model’s: investigation the dependences of parameter estimates and adequacy criteria on the ratio of variance error variables. Informacionnye tehnologii i matematicheskoe modelirovanie v upravlenii slozhnymi sistemami: ehlektronnyj nauchnyj zhurnal [Information technology and mathematical modeling in the management of complex systems: electronic scientific journal], 2019, no. 2, pp. 18–25 (in Russian). Available at: http://ismmirgups.ru/toma/23-2019 (accessed 19 June 2019).
  17. Noskov S. I., Bazilevskiy M. P. Postroyenie regressionnykh modeley s ispol’zovaniem apparata lineino-bulevogo programmirovaniya [Construction of Regression Models Using Linear Boolean Programming]. Irkutsk, IrGUPS, 2018. 176 p. (in Russian).
Short text (in English):
(downloads: 49)