Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Sevastianov L. A., Lovetskiy K. P., Kulyabov D. S., Sergeev S. V. Numerical solution of first-order exact differential equations by the integrating factor method. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2024, vol. 24, iss. 4, pp. 512-525. DOI: 10.18500/1816-9791-2024-24-4-512-525, EDN: ILSNIX

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
25.11.2024
Full text:
(downloads: 94)
Language: 
English
Heading: 
Article type: 
Article
UDC: 
517.98
EDN: 
ILSNIX

Numerical solution of first-order exact differential equations by the integrating factor method

Autors: 
Sevastianov Leonid A., Peoples’ Friendship University of Russia named after Patrice Lumumba
Lovetskiy Konstantin P., Peoples’ Friendship University of Russia named after Patrice Lumumba
Kulyabov Dmitry Sergeevich, Peoples’ Friendship University of Russia named after Patrice Lumumba
Sergeev Stepan V., Peoples’ Friendship University of Russia named after Patrice Lumumba
Abstract: 

A numerical algorithm for solving exact differential equations is proposed, based both on the efficient calculation of integrating factors and on a ''new'' numerical method for integrating functions. Robust determination of the integrating factors is implemented by using the Chebyshev interpolation of the desired functions and performing calculations on Gauss – Lobatto grids, which ensure the discrete orthogonality of the Chebyshev matrices. After that, the integration procedure is carried out using the Chebyshev integration matrices. The integrating factor and the final potential of the ODE solution are presented as interpolation polynomials depending on a limited number of numerically recoverable expansion coefficients.

Acknowledgments: 
This work was supported by the RUDN University Scientific Projects Grant System (project No. 021934-0-000, recipient Konstantin P. Lovetskiy) and by the RUDN University Strategic Academic Leadership Program (recipient Dmitry S. Kulyabov, Stepan V. Sergeev). The work of Leonid A. Sevastianov was supported by the Russian Science Foundation (project No. 20-11-20257).
References: 
  1. Polyanin A. D., Zaitsev V. F. Handbook of ordinary differential equations: Exact solutions, methods, and problems. New York, Chapman Hall/CRC, 2017. 1496 p. https://doi.org/10.1201/9781315117638
  2. Boas M. L. Mathematical methods in the physical sciences. John Wiley & Sons, Inc., 2005. 864 p.
  3. Soifer V. A., Kotlar V., Doskolovich L. Iteractive methods for diffractive optical elements computation. London, CRC Press, 2014. 244 p. https://doi.org/10.1201/9781482272918
  4. Doskolovich L. L., Kharitonov S. I., Petrova O. I., Soifer V. A. A gradient method for design of multiorder varied-depth binary diffraction gratings. Optics and Lasers in Engineering, 1998, vol. 29, iss. 3–4, pp. 249–259. https://doi.org/10.1016/S0143-8166(97)00113-9
  5. Doskolovich L. L., Mingazov A. A., Bykov D. A., Andreev E. S., Bezus E. A. Variational approach to calculation of light field eikonal function for illuminating a prescribed region. Optics Express, 2017, vol. 25, iss. 22, pp. 26378–26392. https://doi.org/10.1364/OE.25.026378
  6. Doskolovich L. L., Bykov D. A., Andreev E. S., Bezus E. A., Oliker V. Designing double freeform surfaces for collimated beam shaping with optimal mass transportation and linear assignment problems. Optics Express, 2018, vol. 26, iss. 19, pp. 24602–24613. https://doi.org/10.1364/OE.26.024602
  7. Wu R., Xu L., Liu P., Zhang Y., Zheng Z., Li H., Liu X. Freeform illumination design: A nonlinear boundary problem for the elliptic Monge–Ampere equation. Optics Letters, 2013, vol. 38, iss. 2, pp. 229–231. https://doi.org/10.1364/OL.38.000229
  8. Wu R., Benitez P., Zhang Y., Minano J. C. Influence of the characteristics of a light source and target on the Monge–Ampere equation method in freeform optics design. Optics Letters, 2005, vol. 39, iss. 3, pp. 634–637. https://doi.org/10.1364/OL.39.000634
  9. Doskolovich L. L., Kazanskiy N. L., Kharitonov S. I., Perlo P., Bernard S. Designing reflectors to generate a line-shaped directivity diagram. Journal of Modern Optics, 2005, vol. 52, iss. 11, pp. 1529–1536. https://doi.org/10.1080/09500340500058082
  10. Doskolovich L. L., Kazanskiy N. L., Bernard S. Designing a mirror to form a line-shaped directivity diagram. Journal of Modern Optics, 2007, vol. 54, iss. 4, pp. 589–597. https://doi.org/10.1080/0950034060102186
  11. Doskolovich L. L., Andreev E. S., Moiseev M. A. On optical surface reconstruction from a prescribed source-target mapping. Computer Optics, 2016, vol. 40, iss. 3, pp. 338–345 (in Russian). https://doi.org/10.18287/2412-6179-2016-40-3-338-345
  12. Doskolovich L. L., Andreev E. S., Kharitonov S. I., Kazansky N. L. Reconstruction of an optical surface from a given source-target map. Journal of the Optical Society of America A, 2016, vol. 33, iss. 8, pp. 1504–1508. https://doi.org/10.1364/JOSAA.33.001504
  13. Sevastianov L. A., Lovetskiy K. P., Kulyabov D. S. Multistage collocation pseudo-spectral method for the solution of the first order linear ODE. 2022 VIII International Conference on Information Technology and Nanotechnology (ITNT). Samara, Russian Federation, Institute of Electrical Electronics Engineers Inc., 2022, pp. 1–6. https://doi.org/10.1109/ITNT55410.2022.9848731
  14. Lovetskiy K. P., Kulyabov D. S., Hissein A. W. Multistage pseudo-spectral method (method of collocations) for the approximate solution of an ordinary differential equation of the first order. Discrete and Continuous Models and Applied Computational Science, 2022, vol. 30, iss. 2, pp. 127–138. https://doi.org/10.22363/2658-4670-2022-30-2-127-138
  15. Stewart G. W. Afternotes on numerical analysis. Philadelphia, Pa, Society for Industrial and Applied Mathematics, 1996. 200 p. https://doi.org/10.1137/1.9781611971491
  16. Amiraslani A., Corless R. M., Gunasingam M. Differentiation matrices for univariate polynomials. Numerical Algorithms, 2020, vol. 83, pp. 1–31. https://doi.org/10.1007/s11075-019-00668-z
  17. Fornberg B. A practical guide to pseudospectral methods. Cambridge University Press, 1996. 230 p. https://doi.org/10.1017/CBO9780511626357
  18. Tenenbaum M., Pollard H. Ordinary differential equations. Dover, New York, Dover Publications, Inc., 1963. 818 p.
  19. Mendes N., Chhay M., Berger J., Dutykh D. Spectral methods. In: Mendes N., Chhay M., Berger J., Dutykh D. Numerical methods for diffusion phenomena in building physics. A practical introduction. Cham, Springer, 2019, pp. 167–209. https://doi.org/10.1007/978-3-030-31574-0_8
Received: 
14.09.2023
Accepted: 
04.12.2023
Published: 
29.11.2024