For citation:
Rubinstein A. I., Telyakovskii D. S. On functions of van der Waerden type. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2023, vol. 23, iss. 3, pp. 339-347. DOI: 10.18500/1816-9791-2023-23-3-339-347, EDN: BUXAKG
On functions of van der Waerden type
Let $\omega(t)$ be an arbitrary modulus of continuity type function, such that $\omega(t)/t\to+\infty$, as $t\to+0$. We construct a continuous nowhere-differentiable function $V_\omega(x)$, $x\in[0;1]$, that satisfies the following conditions: 1) its modulus of continuity satisfies the estimate $O(\omega(t))$ as $t\to+0$; 2) for some positive $c$ at each point $x_0$ holds $\limsup{|V_\omega(x){-}V_\omega(x_0)|}\big/{\omega(|x{-}x_0|)}>c$ as $x\to x_0$; 3) at each point $x_0$ holds $\liminf{|V_\omega(x){-}V_\omega(x_0)|}\big/{\omega(|x{-}x_0|)}=0$ as $x\to x_0$.
- Efimov A. V. Linear methods of approximating continuous periodic functions. Matematicheskii Sbornik. Novaya Seriya, 1961, vol. 54 (96), iss. 1, pp. 51–90. (in Russian).
- Bolzano B. Functionenlehre. In: Bolzano B., Petr K., Rychlik K. Bernard Bolzano’s Schriften. Band 1. Praha, Kralovska ceska spolecnost nauk v Praze, 1930, pp. 80–184.
- Takagi T. A simple example of a continuos function without derivative. Tokyo Sugaku-Butsurigakkwai Hokoku, 1901, vol. 1, pp. 176–177. https://doi.org/10.11429/subutsuhokoku1901.1.F176
- van der Waerden B. L. Ein einfaches Beispiel einer nicht-differenzierbaren stetigen Funktion. Mathematische Zeitschrift, 1930, vol. 32, pp. 474–475 (in German). https://doi.org/10.1007/BF01194647
- Rubinshtein A. I. On w-lacunary series and functions of the classes Hw . Matematicheskii Sbornik. Novaya Seriya, 1964, vol. 65 (107), iss. 2, pp. 239–271 (in Russian).
- Weierstrass K. Uber continuirliche Functionen eines reellen Arguments, die fur keinen Werth des letzeren einen bestimmten Differentialquotienten besitzen. In: Ausgewahlte Kapitel aus der Funktionenlehre: Vorlesung, gehalten in Berlin 1886 Mit der akademischen Antrittsrede, Berlin 1857, und drei weiteren Originalarbeiten von K. Weierstrass aus den Jahren 1870 bis 1880/86. Wiesbaden, Vieweg+Teubner Verlag, 1988, pp. 190–193. https://doi.org/10.1007/978-3-322-91273-2_5 (in German).
- Telyakovskij D. S. On monogeneity conditions. Contemporary Problems of Function Theory and Their Applications: Materials of the 21st International Saratov Winter School (Saratov, January 31 – February 4, 2022). Saratov, Saratov State University Publ., 2022, iss. 21, pp. 289–293 (in Russian). EDN: CZHBTY
- Belov A. S. Local properties of some functions in the Holder class. Russian Mathematics (Izvestiya VUZ. Matematika), 1992, vol. 36, iss. 8, pp. 10–17.
- Mishura Y., Schied A. On (signed) Takagi – Landsberg functions: pth variation, maximum, and modulus of continuity. Journal of Mathematical Analysis and Applications, 2019, vol. 473, iss. 1, pp. 258–272. https://doi.org/10.1016/j.jmaa.2018.12.047
- Kaczmarz S., Steinhaus H. Theorie der Orthogonalreihen. Chelsea Publishing Company, 1951. 296 p. (Russ. ed.: Moscow, GIFML, 1958. 507 p.).
- Rubinshtein A. I. On a Set of Weakly Multiplicative Systems. Mathematical Notes, 2019, vol. 105, iss. 3, pp. 473–477. https://doi.org/10.1134/S0001434619030192
- Gaposhkin V. F. On the convergence of series of weakly multiplicative systems of functions. Mathematics of the USSR-Sbornik, 1972, vol. 18, iss. 3, pp. 361–372. https://doi.org/10.1070/SM1972v018n03ABEH001818
- 1007 reads