Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Boykov I. V., Ryazantsev V. A. On the iterative method for solution of direct and inverse problems for parabolic equations. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2023, vol. 23, iss. 3, pp. 286-310. DOI: 10.18500/1816-9791-2023-23-3-286-310, EDN: HMFDHB

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
31.08.2023
Full text:
(downloads: 587)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
519.63
EDN: 
HMFDHB

On the iterative method for solution of direct and inverse problems for parabolic equations

Autors: 
Boykov Il'ya V., Penza State University
Ryazantsev Vladimir A., Penza State University
Abstract: 

The paper is devoted to approximate methods for solution of direct and inverse problems for parabolic equations. An approximate method for the solution of the initial problem for multidimensional nonlinear parabolic equation is proposed. The method is based on the reduction of the  initial problem to a nonlinear multidimensional intergral Fredholm equation of the second kind which is approximated by a system of nonlinear algebraic equations with the help of the method of mechanical quadratures. For constructing the computational scheme we use the nodes of the local splines which realize order-optimal approximation of the functional class that contains solutions of parabolic equations. For implementation of the computational scheme we use the generalization of the continuous method for solution of nonlinear operator equations that is described in the paper. We also analyse the inverse problem for parabolic equation with fractional order derivative with respect to the time variable. The approximate methods for defining the fractional order of the time derivative and the coeffcient at spatial derivative are proposed.

References: 
  1. Ladyzenskaja O. A., Solonnikov V. A. Ural’ceva N. N. Linear and Quasi-linear Equations of Parabolic Type. Providence, American Mathematical Society, 1988. 648 p.
  2. Lions Zh.-L. Nekotorye metody resheniia nelineinykh kraevykh zadach [Some Methods for Solution of Nonlinear Boundary Problems]. Moscow, Mir, 1972, 588 p. (in Russian).
  3. Mors F. M., Feshbakh G. Metody teoreticheskoi fiziki [Methods of Theoretical Physics]. Vol. 2. Moscow, Media, 2012. 886 p. (in Russian).
  4. Krylov N. V. Lektsii po ellipticheskim i parabolicheskim uravneniiam v prostranstvakh Gel’dera [Lections on Elliptic and Parabolic Equations in Holder Spaces]. Novosibirsk, Nauchnaya kniga, 1998. 178 p. (in Russian).
  5. Krylov N. V. Nelineinye ellipticheskie i parabolicheskie uravneniia vtorogo poriadka [Nonlinear Elliptic and Parabolic Equations of the Second Order]. Moscow, Nauka, 1985, 376 p. (in Russian).
  6. Korpusov M. O. Konspekt lektsii po kursu «Nelineinye ellipticheskie i parabolicheskie uravneniia matematicheskoi fiziki dlia aspirantov» [Lecture Notes on the Course «Nonlinear Elliptic and Parabolic Equations of Mathematical Physics for Postgraduate Students»]. Moscow, Moscow University Press, 2016. 188 p. (in Russian).
  7. Polianin A. D., Zaitsev V. F., Zhurov A. I. Metody resheniia nelineinykh uravnenii matematicheskoi fiziki i mekhaniki [Methods for Solution of Nonlinear Equations of Mathematical Physics and Mechanics]. Moscow, Fizmatlit, 2009. 256 p. (in Russian).
  8. Samarskii A. A., Vabishchevich P. N. Vychislitel’naia teploperedacha [Computational Heat Transfer]. Moscow, LIBROKOM, 2009. 784 p. (in Russian).
  9. Vabishchevich P. N. Vychislitel’nye metody matematicheskoi fiziki. Nestatsionarnye zadachi [Computational Methods of Mathematical Physics. Nonstationary Problems]. Moscow, Vuzovskaya kniga, 2008. 228 p. (in Russian).
  10. Kabanikhin S. I. Inverse and ill-posed problems. Theory and Applications. Berlin, Boston, De Gruyter, 2011. 475 p. https://doi.org/10.1515/9783110224016
  11. Hasanov H. A., Romanov V. G. Introduction to Inverse Problems for Differential Equations. Springer International Publishing AG, 2017. 261 p. https://doi.org/10.1007/978-3-319-62797-7
  12. Denisov A. M. Vvedenie v teoriiu obratnykh zadach [Introduction to the Inverse Problems Theory]. Moscow, Moscow University Press, 1994. 206 p. (in Russian).
  13. Beilina L., Klibanov M. V. Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems. New York, Springer, 2012. 408 p. https://doi.org/10.1007/978-1-4419-7805-9
  14. Boikov I. V., Ryazantsev V. A. On the approximate method for determination of heat conduction coefficient. Zhurnal Srednevolzhskogo matematicheskogo obshchestva [Middle Volga Mathematical Society Journal], 2019, vol. 21, iss. 2, pp. 149–163 (in Russian). https://doi.org/10.15507/2079-6900.21.201902.149-163
  15. Boikov I. V., Ryazantsev V. A. On an iterative method for solution of parabolic equations. Contemporary Problems of Function Theory and Their Applications: Materials of the 21st International Saratov Winter School (Saratov, January 31 – February 4, 2022). Saratov, Saratov State University Publ., 2022, iss. 21, pp. 50–54 (in Russian). EDN: BVALVE
  16. Daletskii Ju. L., Krein M. G. Stability of Solutions of Differential Equations in Banach Space. Translations of Mathematical Monographs. Vol. 43. Providence, American Mathematical Society, 1974. 386 p.
  17. Dekker K., Verwer J. G. Stability of Runge Kutta Methods for Stiff Nonlinear Differential Equations. New York, Elsevier Science Ltd, 1984. 308 p.
  18. Lozinskii S. M. Note on a paper by V. S. Godlevskii. USSR Computational Mathematics and Mathematical Physics, 1973, vol. 13, iss. 2, pp. 232–234. https://doi.org/10.1016/0041-5553(73)90144-4
  19. Kantorovich L. V., Akilov G. P. Functional Analysis. Oxford, Pergamon Press, 1982. 600 p.
  20. Krasnosel’skii M. A., Vainikko G. M., Zabreiko P. P., Rutitskii Ya. B., Stetsenko Ya. V. Approximate Solution of Operator Equations. Groningen, Wolters-Noordhoff Publishing, 1972. 496 p. https://doi.org/10.1007/978-94-010-2715-1
  21. Bakhvalov N. S., Zhidkov N. P., Kobel’kov G. M. Chislennye metody [Numerical Methods]. Moskow, Binom. Laboratoriya znaniy, 2011. 640 p. (in Russian). EDN: QJXMXL
  22. Gavurin M. K. Nonlinear functional equations and continuous analogs of iterative methods. Izvestiya VUZ. Matematika, 1958, iss. 5, pp. 18–31 (in Russian).
  23. Puzynin I. V., Boiadzhiev T. L., Vinitskii S. I., Zemlianaia E. V., Puzynina T. P., Chuluunbaatar O. Methods of computational physics for investigation of models of complex physical systems. Physics of Particles and Nuclei, 2007, vol. 38, iss. 1, pp. 70–116. https://doi.org/10.1134/S1063779607010030
  24. Boikov I. V. On a continuous method for solving nonlinear operator equations. Differential Equations, 2012, vol. 48, iss 9, pp. 1288–1295. https://doi.org/10.1134/S001226611209008X
  25. Boikov I. V., Ryazantsev V. A. On optimal approximation of geophysical fields. Numerical Analysis and Applications, 2021, vol. 14, iss. 1, pp. 13-29. https://doi.org/10.1134/S199542392101002X
  26. Lanczos K. Applied Analysis. New Jersey, Prentice-Hall, Englewood Cliffs, 1956. 539 p.
  27. Boikov I. V., Krivulin N. P. Analiticheskie i chislennye metody identifikatsii dinamicheskikh sistem [Analytical and Numerical Methods for Identification of Dynamical Systems]. Penza, Penza State University Publ., 2016. 398 p. (in Russian).
  28. Boikov I. V., Krivulin N. P. On an approximate method for reconstructing input signals of measuring transformers. Measurement Techniques, 2021, iss. 12, pp. 3–7 (in Russian). https://doi.org/10.32446/0368-1025it.2021-12-3-7, EDN: PVVHQW
  29. Boikov I. V., Ryazantsev V. A. Numerical recovery of the initial condition in the Cauchy problems for linear parabolic and hyperbolic equations. University Proceedings. Volga Region. Physical and Mathematical Sciences, 2020, iss. 3 (55), pp. 72–88 (in Russian). https://doi.org/10.21685/2072-3040-2020-3-6
  30. Boikov I. V., Ryazantsev V. A. An approximate method for solving an inverse coefficient problem for the heat equation. Journal of Applied and Industrial Mathematics, 2021, vol. 15, iss. 2, pp. 175–189. https://doi.org/10.1134/S1990478921020010
  31. Mainardi F. On the initial value problem for the fractional diffusion-wave equation. In: Rionero S., Ruggert T. (eds.) Waves and Stability in Continuous Media. World Scientific, Singapore, 1994, pp. 246–251.
  32. Uchaikin V. V. Metod drobnykh proizvodnykh [Method of Fractional Derivatives]. Ulyanovsk, Artishok, 2008. 512 p. (in Russian).
  33. Samko S. G., Kilbas A. A., Marichev O. I. Fractional Integrals and Derivatives. Theory and Applications. Amsterdam, Gordon and Breach Science Publishers, 1993. 1006 p.
Received: 
12.04.2022
Accepted: 
02.03.2023
Published: 
31.08.2023