For citation:
Dekhkonov F. N. On a time-optimal control problem for a heat conduction equation with involution. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2025, vol. 25, iss. 4, pp. 467-478. DOI: 10.18500/1816-9791-2025-25-4-467-478, EDN: GQNYBX
On a time-optimal control problem for a heat conduction equation with involution
In this paper, we consider a boundary control problem for a heat conduction equation with involution in a bounded one-dimensional domain. The solution with the control function on the border of the rod is given. The constraints on the control are determined to ensure that the average value of the solution within the considered domain attains a given value. The considered control problem is reduced to the Volterra integral equation, which is the first type, using the Fourier method. The proof of the existence of admissible control is related to the existence of a solution of the integral equation. The existence of the control function was proved by the Laplace transform method, and the estimate of the minimum time to reach the given average temperature in the rod was found.
- Fattorini H. O. Time-optimal control of solutions of operational differential equations. Journal of the Society for Industrial and Applied Mathematics Series A Control, 1964, vol. 2, iss.1, pp. 54–59. DOI: https://doi.org/10.1137/0302005
- Friedman A. Optimal control for parabolic equations. Journal of Mathematical Analysis and Applications, 1967, vol. 18, iss. 3, pp. 479–491. DOI: https://doi.org/10.1016/0022-247X(67)90040-6
- Egorov Yu. V. Optimal control in a Banach space. Doklady Akademii Nauk SSSR, 1963, vol. 150, iss. 2, pp. 241–244 (in Russian).
- Chen N., Wang Y., Yang D.-H. Time-varying bang-bang property of time optimal controls for heat equation and its applications. Systems & Control Letters, 2018, vol. 112, pp. 18–23. DOI: https://doi.org/10.1016/j.sysconle.2017.12.008
- Albeverio S., Alimov Sh. A. On one time-optimal control problem associated with the heat exchange process. Applied Mathematics and Optimization, 2008, vol. 57, pp. 58–68. DOI: https://doi.org/10.1007/s00245-007-9008-7
- Alimov Sh. A., Komilov N. M. Determining the thermal mode setting parameters based on output data. Differential Equations, 2022, vol. 58, pp. 21–35. DOI: https://doi.org/10.1134/S00122661220 10049
- Dekhkonov F. N. On the control problem associated with the heating process. Mathematical Notes of NEFU, 2022, vol. 29, iss. 4, pp. 62–71. DOI: https://doi.org/10.25587/SVFU.2023.82.41.005
- Dekhkonov F. N. Boundary control associated with a parabolic equation. Journal of Mathematics and Computer Science, 2024, vol. 33, iss. 2, pp. 146–154. DOI: https://doi.org/10.22436/jmcs.033.02.03
- Fayazova Z. K. Boundary control of the heat transfer process in the space. Russian Mathematics (Izvestiya VUZ. Matematika), 2019, vol. 63, iss. 12, pp. 71–79. DOI: https://doi.org/10.3103/S1066369X19120089
- Dekhkonov F. N. Boundary control problem for the heat transfer equation associated with heating process of a rod. Bulletin of the Karaganda University. Mathematics Series, 2023, vol. 110, iss. 2, pp. 63–71. DOI: https://doi.org/10.31489/2023m2/63-71
- Dekhkonov F. N. On the time-optimal control problem for a heat equation. Bulletin of the Karaganda University. Mathematics Series, 2023, vol. 111, iss. 3, pp. 28–38. DOI: https://doi.org/10.31489/2023m3/28-38
- Lions J. L. Contróle optimal de systèmes gouvernès par des équations aux dérivées partielles. Paris, Dunod, Gauthier-Villars, 1968. 426 p. (in French).
- Fursikov A. V. Optimal control of distributed systems, theory and applications. Translations of Mathematical Monographs, vol. 187. Providence, RI, AMS, 2000. 305 p. DOI: https://doi.org/10.1090/mmono/187
- Altmüller A., Grüne L. Distributed and boundary model predictive control for the heat equation. GAMM-Mitteilungen, 2012, vol. 35, iss. 2, pp. 131–145. DOI: https://doi.org/10.1002/gamm.201210010
- Laroche B., Martin P., Rouchon P. Motion planning for the heat equation. International Journal of Robust and Nonlinear Control, 2000, vol. 10, iss. 8, pp. 629–643. DOI: https://doi.org/10.1002/1099-1239(20000715)10:8<_x0036_29:_x003a_AID-RNC502>3.0.CO;2-N
- Mussirepova E., Sarsenbi A., Sarsenbi A. The inverse problem for the heat equation with reflection of the argument and with a complex coefficient. Boundary Value Problems, 2022, art. 99 (2022). DOI: https://doi.org/10.1186/s13661-022-01675-1
- Kopzhassarova A., Sarsenbi A. Basis properties of eigenfunctions of second-order differential operators with involution. Abstract and Applied Analysis, 2012, vol. 2012, iss. 1, art. 576843. DOI: https://doi.org/10.1155/2012/576843
- Ahmad B., Alsaedi A., Kirane M., Tapdigoglu R. An inverse problem for space and time fractional evolution equations with an involution perturbation. Quaestiones Mathematicae, 2017, vol. 40, iss. 2, pp. 151–160. DOI: https://doi.org/10.2989/16073606.2017.1283370
- Dekhkonov F. N. On the control problem associated with a pseudo-parabolic type equation in an one-dimensional domain. International Journal of Applied Mathematics, 2024, vol. 37, iss. 1, pp. 109–118. DOI: https://doi.org/10.12732/ijam.v37i1.9
- Dekhkonov F. N. Boundary control problem associated with a pseudo-parabolic equation. Stochastic Modelling and Computational Sciences, 2023, vol. 3, iss. 1, pp. 119–130. DOI: https://doi.org/10.61485/SMCS.27523829/v3n1P9
- Cabada A., Tojo F. A. F. General results for differential equations with involutions. In: Differential Equations with Involutions. Paris, Atlantis Press, 2015, pp. 17–23. DOI: https://doi.org/10.2991/978-94-6239-121-5_2
- Carleman T. Sur la théorie des équations intégrales et ses applications. Verhandlungen des Internationalen Mathematiker-Kongresses. Zürich, 1932, vol. 1, pp. 138–151 (in French).
- Wiener J. Generalized solutions of functional-differential equations. New Jersey, World Scientific Publ., 1993. 424 p. DOI: https://doi.org/10.1142/9789814343183
- Dekhkonov F. N., Kuchkorov E. I. On the time-optimal control problem associated with the heating process of a thin rod. Lobachevskii Journal of Mathematics, 2023, vol. 44, iss. 3, pp. 1134–1144. DOI: https://doi.org/10.1134/S1995080223030101
- Tikhonov A. N., Samarsky A. A. Equations of mathematical physics. Moscow, Nauka, 1966. 724 p. (in Russian).
- Alimov Sh. A., Dekhkonov F. N. On a control problem associated with fast heating of a thin rod. Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences, 2019, vol. 2, iss. 1, pp. 1–14. DOI: https://doi.org/10.56017/2181-1318.1016
- 212 reads