Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)

For citation:

Chernishova E. N., Lisovskaya E. Y. On a Total Resource Amounts at the System with Parallel Service and MMPP Arrivals. Izv. Sarat. Univ. Math. Mech. Inform., 2020, vol. 20, iss. 3, pp. 400-410. DOI: 10.18500/1816-9791-2020-20-3-400-410

Published online: 
Full text:
(downloads: 262)
Article type: 

On a Total Resource Amounts at the System with Parallel Service and MMPP Arrivals

Chernishova Elizaveta N., Tomsk State University
Lisovskaya Ekaterina Yu., Tomsk State University

In this paper, we consider a resource system with an unlimited resources and servers number, with parallel customers servicing, arriving at the system according to the MMPP. Using a combination of multidimensional dynamic screening methods and asymptotic analysis, it is proved that the joint asymptotic probability distribution of the total resource amounts converges to a bi-dimensional Gaussian distribution under conditions of increasing intensity of MMPP. The parameters of the asymptotic probability distribution are found. A numerical analysis of the approximation accuracy is carried out.

  1. Gajdamaka Yu. V., Zaripova E. R., Orlov Yu. N. Analysis of the impact the batch size distribution on parameters of the SIP-server queueing model with batch arrivals. KIAM Preprint, Moscow, 2015, no. 27. 16 p. (in Russian). Available at: http://library.keldysh.ru/preprint.asp?id=2015-27 (accessed 07 May 2019).
  2. Еfrosinin D. V. Metody analiza upravlyaemykh dinamicheskikh system [Methods of analysis of controlled dynamic systems]. Diss. Dr. Sci. (Phis. and math.). Moscow, 2013. 332 p. (in Russian).
  3. Galileyskaya A. On the Total Amount of the Occupied Resources in the Multi-Resource QS with Renewal Arrival Process. Informatsionnye tekhnologii i matematicheskoe modelirovanie (ITMM-2019): materialy XVIII Mezhdunar. konf. im. A. F. Terpugova [Information Technology and Mathematical Modeling (ITMM-2019). Materials of the XVIII Int. conf. named after A. F. Terpugov]. Tomsk, Izd-vo NTL, 2019, pt. 2, pp. 80–85.
  4. Lisovskaya Е. Yu., Moiseev A. N., Moiseeva S. P., Pagano M. Modeling of processing of physics experimental data in the form of non-Markovian multi-resource queuing system. Izvestiya vuzov. Fizika, 2018, vol. 61, no. 12 (732), pp. 39–46 (in Russian).
  5. Mandelbaum A., Zeltyn S. The impact of customers’ patience on delay and abandonment: Some empirically-driven experiments with the M/M/n + G queue. OR Spectrum, 2004, vol. 26, pp. 377–411. DOI: https://doi.org/10.1007/s00291-004-0164-8
  6. Neuts M. F. Models based on the Markovian arrival process. IEICE Trans. Comm., 1992, vol. E-75B, no. 12, pp. 1255–1265.
  7. Lucantoni D. M. New results on single server queue with a batch Markovian arrival process. Stoch. Models, 1991, vol. 7, no. 1, pp. 1–46. DOI: https://doi.org/10.1080/15326349108807174
  8. Simulation model of an infinitely linear system for servicing requirements of a random volume with an input flow MMP / Е. Yu. Lisovskaya, S. P. Moiseeva, M. Pagano; copyright holder National Research Tomsk State University (RU). No. 2017612202; declared 17.03.2017; register in the Register of computer programs 12.05.2017 (in Russian).