For citation:
Pleshakov M. G., Tyshkevich S. V. One counterexample of shape-preserving approximation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2014, vol. 14, iss. 2, pp. 144-150. DOI: 10.18500/1816-9791-2014-14-2-144-150, EDN: SHHIDL
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online:
09.06.2014
Full text:
(downloads: 197)
Language:
Russian
Heading:
UDC:
517.5
EDN:
SHHIDL
One counterexample of shape-preserving approximation
Autors:
Pleshakov Mixail Gennadevich, Saratov State University
Tyshkevich Sergey Viktorovich, Saratov State University
Abstract:
Let 2s points yi=−π≤y2s
References:
- Jackson D. On approximation by trigonometric sums and polynomials. Trans. Amer. Math. Soc., 1912, vol. 13, pp. 491–515. DOI: http://dx.doi.org/10.1090/S0002-9947-1912-1500930-2.
- Zygmund A. Smooth Functions. Duke Math. J., 1945, vol. 12, no. 1, pp. 47–76.
- Stechkin S. B. O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami [On the best approximation of periodic functions by trigonometric polynomials]. Dokl. Akad. Nauk SSSR, 1952, vol. 83, no. 5, pp. 651–654 (in Russian).
- Kopotun K. A. Uniform estimates of the coconvex approximation of functions by polynomials. Math. Notes, 1992, vol. 51, no. 3, pp. 245-–254.
- Timan A. F. Usilenie teoremy Dzheksona o nailuchshem priblizhenii nepreryvnykh funktsii na konechnom otrezke veshchestvennoi osi [The strengthening of the theorem of Jackson on the best approximation of continuous functions on a finite interval of the real axis]. Dokl. Akad. Nauk SSSR, 1951, vol. 78, no. 1, pp. 17–20 (in Russian).
- Dzyadyk V. K. O priblizhenii funktsii obyknovennymimnogochlenami na konechnom otrezke veshchestvennoi osi [On the approximation of functions by ordinary polynomials on a finite interval of the real axis]. Izvestiia AN SSSR. Ser. matematicheskaia, 1958, vol. 22, no. 3, pp. 337–354 (in Russian).
- Freud G. ¨Uber die Approximation Reelen Stetiger Functionen Durch Gewohnliche Polinome. Math. Ann., 1959, vol. 137, no. 1, pp. 17–25.
- Teljakovskii S. A. Two theorems on approximation of functions by algebraic polynomials. Mat. Sb. (N. S.), 1966, vol. 70(112), no. 2, pp. 252–265 (in Russian).
- Brudnyi Yu. A. The approximation of functions by algebraic polynomials. Mathematics of the USSR-Izvestiya, 1968, vol. 2, no. 4, pp. 735–743. DOI: 10.1070/IM1968v002n04ABEH000662
- Lorentz G. G., Zeller K. L. Degree of Approximation by Monotone Polynomials. II. J. Approx. Theory, 1969, vol. 2, no. 3, pp. 265–269.
- Shevchuk I. A. Priblizhenie mnogochlenami i sledy nepreryvnykh na otrezke funktsii [Approximation by polynomials and traces continuous on the interval functions]. Kiev, Naukova dumka, 1992. 225 p. (in Russian)
- Shvedov A. S. Jackson’s theorem in Lp, 0 < p < 1, for algebraic polynomials, and orders of comonotone approximations. Math. Notes, 1979, vol. 25, no. 1, pp. 57–63.
- Shvedov A. S. Komonotonnoe priblizhenie funktsii mnogochlenami [Comonotone approximation of functions by polynomials]. Dokl. Akad. Nauk SSSR. 1980, vol. 250, no. 1, pp. 39–42 (in Russian).
- Dzyadyk V. K. Vvedenie v teoriiu ravnomernogo priblizheniia funktsii polinomami [Introduction to the theory of uniform approximation of functions by polynomials]. Moscow, Nauka, 1977, 512 p. (in Russian)
Received:
19.11.2014
Accepted:
20.04.2014
Published:
30.05.2014
Short text (in English):
(downloads: 113)
- 1116 reads