For citation:
Terekhin P. A. Orthorecursive expansions generated by the Szego kernel. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2023, vol. 23, iss. 4, pp. 443-455. DOI: 10.18500/1816-9791-2023-23-4-443-455, EDN: FNPHQP
This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online:
30.11.2023
Full text:
(downloads: 605)
Language:
Russian
Heading:
Article type:
Article
UDC:
517.5
EDN:
FNPHQP
Orthorecursive expansions generated by the Szego kernel
Autors:
Terekhin Pavel A., Saratov State University
Abstract:
This article considers systems of subspaces of the Hardy space generated by the Szego kernel. The main result of the work is to establish the convergence of orthorecursive expansions with respect to the considered systems of subspaces. Note that the conditions for the convergence of orthorecursive expansions prove to be somewhat more restrictive compared to the previously obtained conditions for the convergence of order-preserving weak greedy algorithms and frame expansions.
Acknowledgments:
This research was supported by the Russian Science Foundation (project No. 23-71-30001) at Lomonosov Moscow State University.
References:
- Carleson L. On bounded analytic functions and closure problems. Arkiv for Matematik, 1952, vol. 2, iss. 2–3, pp. 283–291. https://doi.org/10.1007/BF02590884
- Hoffman K. Banach Spaces of Analytic Functions. New Jersey, Prentice Hall Inc., 1962. 242 p. (Russ. ed.: Moscow, IIL, 1963. 311 p.).
- Partington J. R. Interpolation, Identification, and Sampling. Oxford, Clarendon Press, 1997. 267 p.
- Marcus A. W., Spielman D. A., Srivastava N. Interlacing families II: Mixed characteristic polynomials and the Kadison – Singer problem. Annals of Mathematics, 2015, vol. 182, iss. 1, pp. 327–350. https://doi.org/10.4007/annals.2015.182.1.8
- Totik V. Recovery of Hp-functions. Proceedings of the American Mathematical Society, 1984, vol. 90, iss. 4, pp. 531–537. https://doi.org/10.1090/S0002-9939-1984-0733401-3
- Fricain E., Khoi L. H., Lefevre P. Representing systems generated by reproducing kernels. Indagationes Mathematicae, 2018, vol. 29, iss. 3, pp. 860–872. https://doi.org/10.1016/j.indag.2018.01.004
- Speransky K. S., Terekhin P. A. A representing system generated by the Szego kernel for the Hardy space. Indagationes Mathematicae, 2018, vol. 29, iss. 5, pp. 1318–1325. https://doi.org/10.1016/j.indag.2018.06.001
- Terekhin P. A. Frames in Banach space. Functional Analysis and Its Applications, 2010, vol. 44, iss. 3, pp. 199–208. https://doi.org/10.1007/s10688-010-0024-z
- Speransky K. S. On the convergence of the order-preserving weak greedy algorithm for subspaces generated by the Szego kernel in the Hardy space. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2021, vol. 21, iss. 3, pp. 336–342. https://doi.org/10.18500/1816-9791-2021-21-3-336-342
- Lukashenko T. P. Properties of orthorecursive expansions in nonorthogonal systems. Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2001, iss. 1, pp. 6–10 (in Russian). https://www.mathnet.ru/eng/vmumm1436
- Lukashenko T. P., Sadovnichii V. A. Orthorecursive expansions with respect to subspaces. Doklady Mathematics, 2012, vol. 86, iss. 1, pp. 472–475. https://doi.org/10.1134/S1064562412040096
- Galatenko V. V., Lukashenko T. P., Sadovnichii V. A. On the properties of orthorecursive expansions with respect to subspaces. Proceedings of the Steklov Institute of Mathematics, 2014, vol. 284, pp. 129–132. https://doi.org/10.1134/S0081543814010076
- Politov A. V. Orthorecursive expansions in Hilbert spaces. Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 2010, iss. 3, pp. 3–7 (in Russian). https://www.mathnet.ru/eng/vmumm777
- Kudryavtsev A. Yu. On the convergence of orthorecursive expansions in nonorthogonal wavelets. Mathematical Notes, 2012, vol. 92, iss. 5, pp. 643–656. https://doi.org/10.1134/S0001434612110077
Received:
24.07.2023
Accepted:
28.08.2023
Published:
30.11.2023
- 848 reads