For citation:
Antonov S. Y., Antonova A. V. Quasi-polynomials of Capelli. III. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2021, vol. 21, iss. 2, pp. 142-150. DOI: 10.18500/1816-9791-2021-21-2-142-150, EDN: HMVRSQ
Quasi-polynomials of Capelli. III
In this paper polynomials of Capelli type (double and quasi-polynomials of Capelli) belonging to a free associative algebra $F\{X\cup Y\}$ considering over an arbitrary field $F$ and generated by two disjoint countable sets $X, Y$ are investigated. It is shown that double Capelli's polynomials $C_{4k,\{1\}}$, $C_{4k,\{2\}}$ are consequences of the standard polynomial $S^-_{2k}$. Moreover, it is proved that these polynomials equal to zero both for square and for rectangular matrices of corresponding sizes. In this paper it is also shown that all Capelli's quasi-polynomials of the $(4k+1)$ degree are minimal identities of odd component of $Z_2$-graded matrix algebra $M^{(m, k)}(F)$ for any $F$ and $m\ne k$.
- Antonov S. Yu., Antonova A. V. Quasi-polynomials of Capelli. II. Izvestiya of Saratov University. New Series. Series: Mathematics. Mechanics. Informatics, 2020, vol. 20, iss. 1, pp. 4–16 (in Russian). https://doi.org/10.18500/1816-9791-2020-20-1-4-16
- Vincenzo O. M. On the graded identities of M1,1(E). Israel Journal of Mathematics, 1992, vol. 80, no. 3, pp. 323–335. https://doi.org/10.1007/BF02808074
- Mattina D. On the graded identities and cocharacters of the algebra of 3×3 matrices. Linear Algebra and its Applications, 2004, vol. 384, pp. 55–75. https://doi.org/10.1016/S0024-3795(04)00034-5
- Aver’yanov I. V. Basis of graded identities of the superalgebra M1,2(F). Mathematical Notes, 2009, vol. 85, pp. 467–483. https://doi.org/10.1134/S0001434609030195
- Vincenzo O. M. Z2-graded polynomial identities for superalgebras of block-triangular matrices. Serdica Mathematical Journal, 2004, vol. 30, no. 2–3, pp. 111–134.
- Di Vincenzo O. M., Nardozza V. Z2-graded cocharacters for superalgebras of triangular matrices. Journal of Pure and Applied Algebra, 2004, vol. 194, iss. 1–2, pp. 193–211. https://doi.org/10.1016/j.jpaa.2004.04.004
- Amitsur S. A., Levitzki J. Minimal identities for algebras. Proceedings of the American Mathematical Society, 1950, vol. 1, no. 4, pp. 449–463. https://doi.org/10.1090/S0002-9939-1950-0036751-9
- Razmyslov Yu. P On the Jacobson radical in PI algebras. Algebra and Logic, 1974, vol. 13, no. 3, pp. 337–360.
- Gateva T. V. The complexity of a bundle of varieties of associative algebras. Russian Mathematical Surveys, 1981, vol. 36, no. 1, pp. 233.
- Chang Q. Some consequences of the standard polynomial. Proceedings of the American Mathematical Society, 1988, vol. 104, no. 3, pp. 707–710. https://doi.org/10.1090/S0002- 9939-1988-0964846-8
- Giambruno A., Sehgal S. K. On a polynomial identity for n×n matrices. Journal of Algebra, 1989, vol. 126, no. 2, pp. 451–453.
- Antonov S. Yu., Antonova A. V. On multiple polynomials of Capelli type Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2016, vol. 158, no. 1, pp. 5–25 (in Russian).
- Antonov S. Y. The least degree identities subspace M1(m,k) (F) of matrix superalgebra M(m,k) (F). Russian Mathematical (Izvestiya VUZ. Matematika), 2012, no. 56, pp. 1–16. https://doi.org/10.3103/S1066369X12110011
- Latyshev V. N. Combinatorial generators of the multilinear polynomial identities. Journal of Mathematical Sciences, 2008, vol. 149, iss. 2, pp. 1107–1112. https://doi.org/10.1007/s10958-008-0049-5
- Belov A. Ya. The local finite basis property and local representability of varieties of associative rings. Izvestiya: Mathematics, 2010, vol. 74, iss. 1, pp. 1–126. http://dx.doi.org/10.1070/IM2010v074n01ABEH002481
- 1784 reads