For citation:
Radchenko V. P., Berbasova T. I., Saushkin M. N., Akinfieva M. M. Relaxation of residual stresses in surface-hardened rotating prismatic elements of structures under creep conditions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2023, vol. 23, iss. 4, pp. 512-530. DOI: 10.18500/1816-9791-2023-23-4-512-530, EDN: TAEGBQ
Relaxation of residual stresses in surface-hardened rotating prismatic elements of structures under creep conditions
A method for solving boundary problems of relaxation of residual stresses in a rotating surface-hardened prismatic specimen under high-temperature creep conditions has been developed. The problem models the stress-strain state of a surface-hardened prismatic rod with one end fixed to an infinitely rigid disk rotating at a constant angular velocity. In the first stage, we solve the problem of reconstructing fields of residual stresses and plastic deformations after the hardening procedure, which play the role of the initial stress-strain state, is solved. In the second stage, we address the problem of relaxation of residual stresses under creep conditions is addressed. A detailed study of the influence of angular velocity on the intensity of residual stress relaxation in different sections along the axial coordinate is carried out for a 10×10×150 mm prismatic specimen made of EP742 alloy at a temperature of 650∘C, following ultrasonic mechanical hardening of one of its faces. The analysis of the calculation results revealed that for angular velocities ranging from 1500 rpm to 2500 rpm, a non-trivial effect is observed. The relaxation of residual stresses in more stressed sections experiencing axial tensile stresses due to rotation occurs less intensively than in the “tail” section, where the axial load is zero. The obtained results from this study can be useful in assessing the effectiveness of surface-hardened rotating components under high-temperature creep conditions.
- Birger I. A. Ostatochnye napriazheniia [Residual Stresses]. Moscow, Mashgiz, 1963. 232 p. (in Russian).
- Pavlov V. F., Kirpichev V. A., Ivanov V. B. Ostatochnye napriazheniia i soprotivlenie ustalosti uprochnennykh detalei s kontsentratorami napriazhenii [Residual Stresses and Fatigue Resistance of Hardened Parts with Stress Concentrators]. Samara, Samara Scientific Center of the RAS Publ., 2008. 64 p. (in Russian)
- Sulima A. M., Shuvalov V. A., Yagodkin Yu. D. Poverkhnostnyi sloi i ekspluatatsionnye svoistva detalei mashin [Surface Layer and Performance of Machine Parts]. Moscow, Mashinostroenie, 1988. 240 p. (in Russian).
- Nozhnitskiy Yu. A., Fishgoit A. V., Tkachenko R. I., Teplova S. V. Development and application of new GTE parts hardening methods based on the plastic deformation of the surface layers. Vestnik Dvigatelestroeniia, 2006, iss. 2, pp. 8–16 (in Russian).
- Dai K., Shaw L. Analysis of fatigue resistance improvements via surface severe plastic deformation. International Journal of Fatigue, 2008, vol. 30, iss. 8, pp. 1398–1408. https://doi.org/10.1016/j.ijfatigue.2007.10.010
- James M. N., Hughes D. J., Chen Z., Lombard H., Hattingh D. G., Asquith D., Yates J. R., Webster P. J. Residual stresses and fatigue performance. Engineering Failure Analysis, 2007, vol. 14, iss. 2, pp. 384–395. https://doi.org/10.1016/j.engfailanal.2006.02.011
- Majzoobi G. H., Azadikhah K., Nemati J. The effect of deep rolling and shot peening on fretting fatigue resistance of Aluminum-7075-T6. Materials Science and Engineering: A, 2009, vol. 516, iss. 1–2, pp. 235–247. https://doi.org/10.1016/j.msea.2009.03.020
- Soady K. A. Life assessment methodologies incorporating shot peening process effects: Mechanistic consideration of residual stresses and strain hardening. Part 1. Effeact of shot peening on fatigue resistance. Materials Science and Technology, 2013, vol. 29, iss. 6, pp. 673–651. https://doi.org/10.1179/1743284713Y.0000000222
- Terres M. A., Laalai N., Sidhom H. Effect of nitriding and shot peening on the fatigue behavior of 42CrMo4 steel: Experimantal analysis and predictive approach. Materials & Design, 2012, vol. 35, pp. 741–748. https://doi.org/10.1016/j.matdes.2011.09.055
- Pavlov V. F., Kirpichev V. A., Vakulyuk V. S. Prognozirovanie soprotivleniya ustalosti poverkhnostno uprochnionnykh detalei po ostatochnym napriazheniyam [Prediction of Fatigue Resistance of Surface Reinforced Parts by Residual Stresses]. Samara, Samara Scientific Center of the RAS Publ., 2012. 125 p. (in Russian). EDN: TAFJVZ
- Radchenko V. P., Morozov A. P. Experimental study of the effect induced by air shot-blasting processing, thermal exposition and high cycle fatigue tests on physical and mechanical condition hardening layer of cylindrical samples of alloys V95 and D16T. Journal of Samara State Technical University, Series Physical and Mathematical Sciences, 2010, iss. 5 (21), pp. 222–228 (in Russian). https://doi.org/10.14498/vsgtu829, EDN: NCTNON
- Radchenko V. P., Saushkin M. N., Bochkova T. I. Mathematical modeling and experimental study of forming and relaxation of residual stresses in plane samples made of EP742 alloy after ultrasonic hardening under high-temperature creep conditions. PNRPU Mechanics Bulletin, 2018, iss. 3–4, pp. 88–98. https://doi.org/10.15593/perm.mech/eng.2018.3.09, EDN: CYWBGO
- Radchenko V. P., Pavlov V. F., Saushkin M. N. Investigation of surface plastic hardening anisotropy influence on residual stresses distribution in hollow and solid cylindrical specimens. PNRPU Mechanics Bulletin, 2015, iss. 1, pp. 130–147 (in Russian). https://doi.org/10.15593/perm.mech/2015.1.09, EDN: TVSBYV
- Radchenko V. P., Saushkin M. N. Mathematical models of recovery and relaxation of residual stresses in a surface-hardened layer of cylindrical specimens under creep conditions. Izvestiya vuzov. Mashinostroenie, 2004, iss. 11, pp. 3–17 (in Russian). EDN: SPETFD
- Radchenko V. P., Saushkin M. N. Polzuchest’ i relaksatsiya ostatochnykh napriazheniy v uprochnennykh konstruktsiyakh [Creep and Relaxation of Residual Stresses in Hardened Structures]. Moscow, Mashinostroenie-1, 2005. 226 p. (in Russian). EDN: RXLJLN
- Sazanov V. P., Kirpichev V. A., Vakulyuk V. S., Pavlov V. F. The definition of initial deformations in the cylindrical parts surface layer by Finite Elements Modeling method using PATRAN/NASTRAN program complex. Vestnik UGATU, 2015, vol. 19, iss. 2 (68), pp. 35–40 (in Russian). EDN: VYWUPR
- Vakulyuk V. S., Sazanov V. P., Shadrin V. K., Mikushev N. N., Zlobin A. S. Thermoelasticity method application on finite elements modeling of residual strained state in surface hardened parts. Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 2014, vol. 16, iss. 4, pp. 168–174 (in Russian). EDN: SZGRAD
- Vatulyan A. O. Obratnye zadachi v mekhanike deformiruemogo tverdogo tela [Inverse Problems in Mechanics of Solids]. Moscow, Fizmatlit, 2007. 223 p. (in Russian). EDN: UGLKIJ
- Vatulyan A. O., Dudarev V. V. On some problems of reconstruction of inhomogeneous prestressed state in elastic solids. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2009, vol. 9, iss. 4, pt. 2, pp. 25–32 (in Russian). https://doi.org/10.18500/1816-9791-2009-9-4-2-25-32, EDN: KZFEQT
- Chen H., Wang S., Lu S., Qiao Y., Wang X., Fan N., Guo P., Niu J. Simulation and experimental validation of residual stress and surface roughhness of high manganese steel after shot peening. Procedia CIRP, 2018, vol. 71, pp. 227–231. https://doi.org/10.1016/j.procir.2018.05.066
- Isa M. R., Sulaiman S. N., Zaroog O. S. Experimental and simulation method of introducing compressive residual stress in ASTM A516 grade 70 steel. Key Engineering Materials, 2019, vol. 803, pp. 27–31. https://doi.org/10.4028/www.scientific.net/KEM.803.27
- Kiselev I. A., Zhukov N. A., Vasilyev B. E., Selivanov A. N. Modeling of residual stresses when calculating strength of lock joint elements. Part 1. Modeling of the shot peening process. Izvestiya vuzov. Mashinostroenie [Proceedings of Higher Educational Institutions Маchine Building], 2018, iss. 11, pp. 49–59 (in Russian). https://doi.org/10.18698/0536-1044-2018-11-49-59, EDN: YOUZDF
- Meguid S. A., Maicic L. A. Finite element modeling of shot peening residual stress relaxation in turbine disk assemblies. Journal of Engineering Materials and Technology, 2015, vol. 137, iss. 3, art. 031003. https://doi.org/10.1115/1.4030066
- Gallitelli D., Boyer V., Gelineau M., Colaitis Y., Rouhaud E., Retraint D., Kubler R., Desvignes M., Barrallier L. Simulation of shot peening: From process parameters to residual stress fields in a structure. Comptes Rendus Mecanique, 2016, vol. 344, iss. 4–5, pp. 355–374. https://doi.org/10.1016/j.crme.2016.02.006
- Zimmermann M., Klemenz M., Schulze V. Literature review on shot peening simulation. International Journal of Computational Materials Science and Surface Engineering, 2010, vol. 3, iss. 4, pp. 289–310. https://doi.org/10.1504/ijcmsse.2010.036218
- Purohil R., Verma C. S., Rana R. S., Dwivedi R., Dwivedi S. Simulation of shot peening process. Materials Today: Proceedings, 2017, vol. 4, iss. 2A, pp. 1244–1251. https://doi.org/10.1016/j.matpr.2017.01.144
- Radchenko V. P., Saushkin M. N. Direct method of solving the boundary-value problem of relaxation of residual stresses in a hardened cylindrical specimen under creep conditions. Journal of Applied Mechanics and Technical Physics, 2009, vol. 50, iss. 6, pp. 989–997. https://doi.org/10.1007/s10808-009-0133-8, EDN: UZQMFB
- Radchenko V. P., Kocherov E. P., Saushkin M. N., Smyslov V. A. Experimental and theoretical studies of the influence of a tensile load on the relaxation of residual stresses in a hardened cylindrical specimen under creep conditions. Journal of Applied Mechanics and Technical Physics, 2015, vol. 56, iss. 2, pp. 313–320. https://doi.org/10.1134/S0021894415020170, EDN: UGHRIL
- Radchenko V. P., Tsvetkov V. V., Saushkin M. N. Residual stress relaxation in a hardened cylinder under creep, loaded by an axial force, torque and internal pressure. Journal of Applied Mechanics and Technical Physics, 2020, vol. 61, iss. 4, pp. 583–592. https://doi.org/10.1134/S0021894420040124, EDN: REDSOB
- Radchenko V. P., Saushkin M. N., Tsvetkov V. V. Effect of thermal exposure on the residual stress relaxation in a hardened cylindrical sample under creep conditions. Journal of Applied Mechanics and Technical Physics, 2016, vol. 57, iss. 3, pp. 559–568. https://doi.org/10.1134/S0021894416030202, EDN: WVPKZL
- Derevyanka E. E., Radchenko V. P., Tsvetkov V. V. Relaxation of residual stresses in a surface-hardened cylinder under creep conditions and rigid restrictions on linear and angular deformations. Mechanics of Solids, 2020, vol. 55, iss. 6, pp. 898–906. https:/doi.org/10.3103/S0025654420660024, EDN: VVJDZI
- Radchenko V. P., Derevyanka E. E. Kinetics of residual stresses in thin-walled cylindrical specimens after bilateral surface hardening under creep conditions with rigid constraints on angular and axial linear displacements. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2023, vol. 23, iss. 2, pp. 227–240 (in Russian). https://doi.org/10.18500/1816-9791-2023-23-2-227-240, EDN: VGQVUH
- Radchenko V. P., Derevyanka E. E. Mathematical modeling of creep and residual stresses relaxation in surface hardened elements of statically indefinable rod systems. Journal of Samara State Technical University, Series Physical and Mathematical Sciences, 2018, vol. 22, iss. 4, pp. 647–668 (in Russian). https://doi.org/10.14498/vsgtu1631, EDN: YSDYYX
- Saushkin M. N., Prosvirkina E. A. Relaxation of residual stresses in a surface-hardened layer of a solid rotating cylinder under creep conditions. Proceedings of the Third All-Russian Scientific Conference (29–31 May 2006). Part 1. Matematicheskoe Modelirovanie i Kraevye Zadachi. Samara, Samara State Technical University Publ., 2006, pp. 192–199 (in Russian). https://www.mathnet.ru/mmkz558
- Radchenko V. P., Liberman A. E., Blokhin O. L. Relaxation of residual stresses in a surface-hardened rotating cylinder under creep conditions. Journal of Samara State Technical University, Series Physical and Mathematical Sciences, 2022, vol. 26, iss 1, pp. 119–139 (in Russian). https://doi.org/10.14498/vsgtu1884, EDN: GFBZBC
- Birger I. A., Shorr B. F., Iosilevich G. B. Raschet na prochnost’ detalei mashin [Calculation of the Strength of Machine Parts]. Moscow, Mashinostroenie, 1979. 702 p. (in Russian).
- Samarin Yu. P. Uravneniya sostoyaniya materialov so slozhnymi reologicheskimi svoistvami [Equations of State of Materials with Complex Rheological Properties]. Kuibyshev, Kuibyshev State University Publ., 1979. 84 p. (in Russian).
- Radchenko V. P., Eremin Yu. A. Reologicheskoe deformirovanie i razrushenie materialov i elementov konstruktsiy [Rheological Deformation and Fracture of Materials and Structural Elements]. Moscow, Mashinostroenie-1, 2004. 265 p. (in Russian). EDN: QNATSX
- 1191 reads