Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Radchenko V. P., Berbasova T. I., Saushkin M. N., Akinfieva M. M. Relaxation of residual stresses in surface-hardened rotating prismatic elements of structures under creep conditions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2023, vol. 23, iss. 4, pp. 512-530. DOI: 10.18500/1816-9791-2023-23-4-512-530, EDN: TAEGBQ

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
30.11.2023
Full text:
(downloads: 389)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
539.376:621.787
EDN: 
TAEGBQ

Relaxation of residual stresses in surface-hardened rotating prismatic elements of structures under creep conditions

Autors: 
Radchenko Vladimir P., Samara State Technical University
Berbasova Tatiana I., Samara State Technical University
Saushkin Mikhail N., Samara State Technical University
Akinfieva Mariya M., Samara State Technical University
Abstract: 

A method for solving boundary problems of relaxation of residual stresses in a rotating surface-hardened prismatic specimen under high-temperature creep conditions has been developed. The problem models the stress-strain state of a surface-hardened prismatic rod with one end fixed to an infinitely rigid disk rotating at a constant angular velocity. In the first stage, we solve the problem of reconstructing fields of residual stresses and plastic deformations after the hardening procedure, which play the role of the initial stress-strain state, is solved. In the second stage, we address  the problem of relaxation of residual stresses under creep conditions is addressed. A detailed study of the influence of angular velocity on the intensity of residual stress relaxation in different sections along the axial coordinate is carried out for a $10{\times}10{\times}150$ mm prismatic specimen made of EP742 alloy at a temperature of 650$^\circ$C, following ultrasonic mechanical hardening of one of its faces. The analysis of the calculation results revealed that for angular velocities ranging from 1500 rpm to 2500 rpm, a non-trivial effect is observed. The relaxation of residual stresses in more stressed sections experiencing axial tensile stresses due to rotation occurs less intensively than in the “tail” section, where the axial load is zero. The obtained results from this study can be useful in assessing the effectiveness of surface-hardened rotating components under high-temperature creep conditions.

Acknowledgments: 
This work was supported by the Russian Science Foundation (project No. 23-29-00434), https://rscf.ru/en/project/23-29-00434/).
References: 
  1. Birger I. A. Ostatochnye napriazheniia [Residual Stresses]. Moscow, Mashgiz, 1963. 232 p. (in Russian).
  2. Pavlov V. F., Kirpichev V. A., Ivanov V. B. Ostatochnye napriazheniia i soprotivlenie ustalosti uprochnennykh detalei s kontsentratorami napriazhenii [Residual Stresses and Fatigue Resistance of Hardened Parts with Stress Concentrators]. Samara, Samara Scientific Center of the RAS Publ., 2008. 64 p. (in Russian)
  3. Sulima A. M., Shuvalov V. A., Yagodkin Yu. D. Poverkhnostnyi sloi i ekspluatatsionnye svoistva detalei mashin [Surface Layer and Performance of Machine Parts]. Moscow, Mashinostroenie, 1988. 240 p. (in Russian).
  4. Nozhnitskiy Yu. A., Fishgoit A. V., Tkachenko R. I., Teplova S. V. Development and application of new GTE parts hardening methods based on the plastic deformation of the surface layers. Vestnik Dvigatelestroeniia, 2006, iss. 2, pp. 8–16 (in Russian).
  5. Dai K., Shaw L. Analysis of fatigue resistance improvements via surface severe plastic deformation. International Journal of Fatigue, 2008, vol. 30, iss. 8, pp. 1398–1408. https://doi.org/10.1016/j.ijfatigue.2007.10.010
  6. James M. N., Hughes D. J., Chen Z., Lombard H., Hattingh D. G., Asquith D., Yates J. R., Webster P. J. Residual stresses and fatigue performance. Engineering Failure Analysis, 2007, vol. 14, iss. 2, pp. 384–395. https://doi.org/10.1016/j.engfailanal.2006.02.011
  7. Majzoobi G. H., Azadikhah K., Nemati J. The effect of deep rolling and shot peening on fretting fatigue resistance of Aluminum-7075-T6. Materials Science and Engineering: A, 2009, vol. 516, iss. 1–2, pp. 235–247. https://doi.org/10.1016/j.msea.2009.03.020
  8. Soady K. A. Life assessment methodologies incorporating shot peening process effects: Mechanistic consideration of residual stresses and strain hardening. Part 1. Effeact of shot peening on fatigue resistance. Materials Science and Technology, 2013, vol. 29, iss. 6, pp. 673–651. https://doi.org/10.1179/1743284713Y.0000000222
  9. Terres M. A., Laalai N., Sidhom H. Effect of nitriding and shot peening on the fatigue behavior of 42CrMo4 steel: Experimantal analysis and predictive approach. Materials & Design, 2012, vol. 35, pp. 741–748. https://doi.org/10.1016/j.matdes.2011.09.055
  10. Pavlov V. F., Kirpichev V. A., Vakulyuk V. S. Prognozirovanie soprotivleniya ustalosti poverkhnostno uprochnionnykh detalei po ostatochnym napriazheniyam [Prediction of Fatigue Resistance of Surface Reinforced Parts by Residual Stresses]. Samara, Samara Scientific Center of the RAS Publ., 2012. 125 p. (in Russian). EDN: TAFJVZ
  11. Radchenko V. P., Morozov A. P. Experimental study of the effect induced by air shot-blasting processing, thermal exposition and high cycle fatigue tests on physical and mechanical condition hardening layer of cylindrical samples of alloys V95 and D16T. Journal of Samara State Technical University, Series Physical and Mathematical Sciences, 2010, iss. 5 (21), pp. 222–228 (in Russian). https://doi.org/10.14498/vsgtu829, EDN: NCTNON
  12. Radchenko V. P., Saushkin M. N., Bochkova T. I. Mathematical modeling and experimental study of forming and relaxation of residual stresses in plane samples made of EP742 alloy after ultrasonic hardening under high-temperature creep conditions. PNRPU Mechanics Bulletin, 2018, iss. 3–4, pp. 88–98. https://doi.org/10.15593/perm.mech/eng.2018.3.09, EDN: CYWBGO
  13. Radchenko V. P., Pavlov V. F., Saushkin M. N. Investigation of surface plastic hardening anisotropy influence on residual stresses distribution in hollow and solid cylindrical specimens. PNRPU Mechanics Bulletin, 2015, iss. 1, pp. 130–147 (in Russian). https://doi.org/10.15593/perm.mech/2015.1.09, EDN: TVSBYV
  14. Radchenko V. P., Saushkin M. N. Mathematical models of recovery and relaxation of residual stresses in a surface-hardened layer of cylindrical specimens under creep conditions. Izvestiya vuzov. Mashinostroenie, 2004, iss. 11, pp. 3–17 (in Russian). EDN: SPETFD
  15. Radchenko V. P., Saushkin M. N. Polzuchest’ i relaksatsiya ostatochnykh napriazheniy v uprochnennykh konstruktsiyakh [Creep and Relaxation of Residual Stresses in Hardened Structures]. Moscow, Mashinostroenie-1, 2005. 226 p. (in Russian). EDN: RXLJLN
  16. Sazanov V. P., Kirpichev V. A., Vakulyuk V. S., Pavlov V. F. The definition of initial deformations in the cylindrical parts surface layer by Finite Elements Modeling method using PATRAN/NASTRAN program complex. Vestnik UGATU, 2015, vol. 19, iss. 2 (68), pp. 35–40 (in Russian). EDN: VYWUPR
  17. Vakulyuk V. S., Sazanov V. P., Shadrin V. K., Mikushev N. N., Zlobin A. S. Thermoelasticity method application on finite elements modeling of residual strained state in surface hardened parts. Izvestia of Samara Scientific Center of the Russian Academy of Sciences, 2014, vol. 16, iss. 4, pp. 168–174 (in Russian). EDN: SZGRAD
  18. Vatulyan A. O. Obratnye zadachi v mekhanike deformiruemogo tverdogo tela [Inverse Problems in Mechanics of Solids]. Moscow, Fizmatlit, 2007. 223 p. (in Russian). EDN: UGLKIJ
  19. Vatulyan A. O., Dudarev V. V. On some problems of reconstruction of inhomogeneous prestressed state in elastic solids. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2009, vol. 9, iss. 4, pt. 2, pp. 25–32 (in Russian). https://doi.org/10.18500/1816-9791-2009-9-4-2-25-32, EDN: KZFEQT
  20. Chen H., Wang S., Lu S., Qiao Y., Wang X., Fan N., Guo P., Niu J. Simulation and experimental validation of residual stress and surface roughhness of high manganese steel after shot peening. Procedia CIRP, 2018, vol. 71, pp. 227–231. https://doi.org/10.1016/j.procir.2018.05.066
  21. Isa M. R., Sulaiman S. N., Zaroog O. S. Experimental and simulation method of introducing compressive residual stress in ASTM A516 grade 70 steel. Key Engineering Materials, 2019, vol. 803, pp. 27–31. https://doi.org/10.4028/www.scientific.net/KEM.803.27
  22. Kiselev I. A., Zhukov N. A., Vasilyev B. E., Selivanov A. N. Modeling of residual stresses when calculating strength of lock joint elements. Part 1. Modeling of the shot peening process. Izvestiya vuzov. Mashinostroenie [Proceedings of Higher Educational Institutions Маchine Building], 2018, iss. 11, pp. 49–59 (in Russian). https://doi.org/10.18698/0536-1044-2018-11-49-59, EDN: YOUZDF
  23. Meguid S. A., Maicic L. A. Finite element modeling of shot peening residual stress relaxation in turbine disk assemblies. Journal of Engineering Materials and Technology, 2015, vol. 137, iss. 3, art. 031003. https://doi.org/10.1115/1.4030066
  24. Gallitelli D., Boyer V., Gelineau M., Colaitis Y., Rouhaud E., Retraint D., Kubler R., Desvignes M., Barrallier L. Simulation of shot peening: From process parameters to residual stress fields in a structure. Comptes Rendus Mecanique, 2016, vol. 344, iss. 4–5, pp. 355–374. https://doi.org/10.1016/j.crme.2016.02.006
  25. Zimmermann M., Klemenz M., Schulze V. Literature review on shot peening simulation. International Journal of Computational Materials Science and Surface Engineering, 2010, vol. 3, iss. 4, pp. 289–310. https://doi.org/10.1504/ijcmsse.2010.036218
  26. Purohil R., Verma C. S., Rana R. S., Dwivedi R., Dwivedi S. Simulation of shot peening process. Materials Today: Proceedings, 2017, vol. 4, iss. 2A, pp. 1244–1251. https://doi.org/10.1016/j.matpr.2017.01.144
  27. Radchenko V. P., Saushkin M. N. Direct method of solving the boundary-value problem of relaxation of residual stresses in a hardened cylindrical specimen under creep conditions. Journal of Applied Mechanics and Technical Physics, 2009, vol. 50, iss. 6, pp. 989–997. https://doi.org/10.1007/s10808-009-0133-8, EDN: UZQMFB
  28. Radchenko V. P., Kocherov E. P., Saushkin M. N., Smyslov V. A. Experimental and theoretical studies of the influence of a tensile load on the relaxation of residual stresses in a hardened cylindrical specimen under creep conditions. Journal of Applied Mechanics and Technical Physics, 2015, vol. 56, iss. 2, pp. 313–320. https://doi.org/10.1134/S0021894415020170, EDN: UGHRIL
  29. Radchenko V. P., Tsvetkov V. V., Saushkin M. N. Residual stress relaxation in a hardened cylinder under creep, loaded by an axial force, torque and internal pressure. Journal of Applied Mechanics and Technical Physics, 2020, vol. 61, iss. 4, pp. 583–592. https://doi.org/10.1134/S0021894420040124, EDN: REDSOB
  30. Radchenko V. P., Saushkin M. N., Tsvetkov V. V. Effect of thermal exposure on the residual stress relaxation in a hardened cylindrical sample under creep conditions. Journal of Applied Mechanics and Technical Physics, 2016, vol. 57, iss. 3, pp. 559–568. https://doi.org/10.1134/S0021894416030202, EDN: WVPKZL
  31. Derevyanka E. E., Radchenko V. P., Tsvetkov V. V. Relaxation of residual stresses in a surface-hardened cylinder under creep conditions and rigid restrictions on linear and angular deformations. Mechanics of Solids, 2020, vol. 55, iss. 6, pp. 898–906. https:/doi.org/10.3103/S0025654420660024, EDN: VVJDZI
  32. Radchenko V. P., Derevyanka E. E. Kinetics of residual stresses in thin-walled cylindrical specimens after bilateral surface hardening under creep conditions with rigid constraints on angular and axial linear displacements. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2023, vol. 23, iss. 2, pp. 227–240 (in Russian). https://doi.org/10.18500/1816-9791-2023-23-2-227-240, EDN: VGQVUH
  33. Radchenko V. P., Derevyanka E. E. Mathematical modeling of creep and residual stresses relaxation in surface hardened elements of statically indefinable rod systems. Journal of Samara State Technical University, Series Physical and Mathematical Sciences, 2018, vol. 22, iss. 4, pp. 647–668 (in Russian). https://doi.org/10.14498/vsgtu1631, EDN: YSDYYX
  34. Saushkin M. N., Prosvirkina E. A. Relaxation of residual stresses in a surface-hardened layer of a solid rotating cylinder under creep conditions. Proceedings of the Third All-Russian Scientific Conference (29–31 May 2006). Part 1. Matematicheskoe Modelirovanie i Kraevye Zadachi. Samara, Samara State Technical University Publ., 2006, pp. 192–199 (in Russian). https://www.mathnet.ru/mmkz558
  35. Radchenko V. P., Liberman A. E., Blokhin O. L. Relaxation of residual stresses in a surface-hardened rotating cylinder under creep conditions. Journal of Samara State Technical University, Series Physical and Mathematical Sciences, 2022, vol. 26, iss 1, pp. 119–139 (in Russian). https://doi.org/10.14498/vsgtu1884, EDN: GFBZBC
  36. Birger I. A., Shorr B. F., Iosilevich G. B. Raschet na prochnost’ detalei mashin [Calculation of the Strength of Machine Parts]. Moscow, Mashinostroenie, 1979. 702 p. (in Russian).
  37. Samarin Yu. P. Uravneniya sostoyaniya materialov so slozhnymi reologicheskimi svoistvami [Equations of State of Materials with Complex Rheological Properties]. Kuibyshev, Kuibyshev State University Publ., 1979. 84 p. (in Russian).
  38. Radchenko V. P., Eremin Yu. A. Reologicheskoe deformirovanie i razrushenie materialov i elementov konstruktsiy [Rheological Deformation and Fracture of Materials and Structural Elements]. Moscow, Mashinostroenie-1, 2004. 265 p. (in Russian). EDN: QNATSX
Received: 
20.07.2023
Accepted: 
28.09.2023
Published: 
30.11.2023