Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Kelbert M. Y., Suhov Y. M. Wasserstein and weighted metrics for multidimensional Gaussian distributions. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2023, vol. 23, iss. 4, pp. 422-434. DOI: 10.18500/1816-9791-2023-23-4-422-434, EDN: ANLRAB

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
30.11.2023
Full text:
(downloads: 416)
Language: 
English
Heading: 
Article type: 
Article
UDC: 
519.85
EDN: 
ANLRAB

Wasserstein and weighted metrics for multidimensional Gaussian distributions

Autors: 
Kelbert Mark Yakovlevich, Higher School of Economics – National Research University
Suhov Yurii M., DPMMS, Penn State University
Abstract: 

We present a number of low and upper bounds for Levy – Prokhorov, Wasserstein, Frechet, and Hellinger distances between probability distributions of the same or different dimensions. The weighted (or context-sensitive) total variance and Hellinger  distances are introduced. The upper and low bounds for these weighted metrics are proved. The low bounds for the minimum of different errors in sensitive hypothesis testing are proved. 

Acknowledgments: 
This research is supported by the Russian Science Fund (project No. 23-21-00052) and the HSE University Basic Research Program.
References: 
  1. Vallander S. S. Calculation of the Wasserstein distance between probability distributions on the line. Theory of Probability & Its Applications, 1974, vol. 18, iss. 4, pp. 784–786. https://doi.org/10.1137/1118101
  2. Rachev S. T. The Monge – Kantorovich mass transference problem and its stochastic applications. Theory of Probability & Its Applications, 1985, vol. 29, iss. 4, pp. 647–676. https://doi.org/10.1137/1129093
  3. Givens C. R., Shortt R. M. A class of Wasserstein metrics for probability distributions. The Michigan Mathematical Journal, 1984, vol. 31, iss. 2, pp. 231–240. https://doi.org/10.1307/mmj/1029003026
  4. Olkin I., Pukelsheim F. The distances between two random vectors with given dispersion matrices. Linear Algebra and its Applications, 1982, vol. 48, pp. 257–263. https://doi.org/10.1016/0024-3795(82)90112-4
  5. Dowson D. C., Landau B. V. The Frechet distance between multivariate Normal distributions. Journal of Multivariate Analysis, 1982, vol. 12, iss. 3, pp. 450–455. https://doi.org/10.1016/0047-259X(82)90077-X
  6. Cai Y., Lim L.-H., Distances between probability distributions of different dimensions. IEEE Transactions on Information Theory, 2022, vol. 68, iss. 6, pp. 4020–4031. https://doi.org/10.1109/TIT.2022.3148923
  7. Dwivedi A., Wang S., Tajer A. Discriminant analysis under f-divergence measures. Entropy, 2022, vol. 24, iss. 2, art. 188, 26 p. https://doi.org/10.3390/e24020188
  8. Devroye L., Mehrabian A., Reddad T. The total variation distance between high-dimensional Gaussians. ArXiv, 2020, ArXiv:1810.08693v5, pp. 1–12.
  9. Endres D. M., Schindelin J. E. A new metric for probability distributions. IEEE Transactions on Information Theory, 2003, vol. 49, iss. 7, pp. 1858–1860. https://doi.org/10.1109/TIT.2003.813506
  10. Stuhl I., Suhov Y., Yasaei Sekeh S., Kelbert M. Basic inequalities for weighted entropies. Aequationes Mathematicae, 2016, vol. 90, iss. 4, pp. 817–848. https://doi.org/10.1007/s00010-015-0396-5
  11. Stuhl I., Kelbert M., Suhov Y., Yasaei Sekeh S. Weighted Gaussian entropy and determinant inequalities. Aequationes Mathematicae, 2022, vol. 96, iss. 1, pp. 85–114. https://doi.org/10.1007/s00010-021-00861-3
Received: 
09.12.2022
Accepted: 
25.12.2022
Published: 
30.11.2023