Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Velmisov P. A., Ankilov A. V., Pokladova Y. V. Investigation of mathematical model of pressure measurement system in aircraft engines. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2024, vol. 24, iss. 4, pp. 567-577. DOI: 10.18500/1816-9791-2024-24-4-567-577, EDN: TTEUAH

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
25.11.2024
Full text:
(downloads: 74)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
517.9:539.3:532.5
EDN: 
TTEUAH

Investigation of mathematical model of pressure measurement system in aircraft engines

Autors: 
Velmisov Petr Alexandrovich, Ulyanovsk State Technical University
Ankilov Andrey V., Ulyanovsk State Technical University
Pokladova Yuliya V., Ulyanovsk State Technical University
Abstract: 

A mechanical system consisting of a pipeline connected at one end to the combustion chamber of an aircraft engine, and with a sensor designed to measure the pressure in the combustion chamber at the other end is investigated in the work. The sensitive element of the sensor, which transmits information about pressure, is an elastic plate. A mathematical model of a pressure measurement system, taking into account the transfer of heat flow through a pipeline with a working medium (gas or liquid) from the engine to the elastic element, is proposed. To describe the vibrations of the sensitive element of the sensor, a linear model of a solid deformable body is considered, taking into account the temperature distribution over the thickness of the elastic element. Using the small parameter method, a coupled system of asymptotic partial differential equations was obtained that describes the joint dynamics of the gas-liquid medium in the pipeline and the elastic sensitive element of the pressure sensor. The cases of hinged and rigid fastening of the ends of the sensing element were studied. Based on the Bubnov – Galerkin method, the problem is reduced to the study of a coupled system of ordinary differential equations. Using the computer algebra system Mathematica 12.0, numerical experiments were carried out for specific parameters of the mechanical system.

Acknowledgments: 
The work was supported by the Russian Science Foundation (project No. 23-21-00517).
References: 
  1. Aulisa E., Ibragimov A., Kaya-Cekin E. Y. Fluid structure interaction problem with changing thickness beam and slightly compressible fluid. Discrete and Continuous Dynamical Systems – S, 2014, vol. 7, iss. 6, pp. 1133–1148. https://doi.org/10.3934/dcdss.2014.7.1133
  2. Faal R. T., Derakhshan D. Flow-induced vibration of pipeline on elastic support. Procedia Engineering, 2011, vol. 14, pp. 2986–2993. https://doi.org/10.1016/j.proeng.2011.07.376
  3. Kheiri M., Paidoussis M. P. Dynamics and stability of a flexible pinned-free cylinder in axial flow. Journal of Fluids and Structures, 2015, vol. 55, pp. 204–217. https://doi.org/10.1016/j.jfluidstructs.2015.02.013
  4. Giacobbi D. B., Semler C., Paidoussis M. P. Dynamics of pipes conveying fluid of axially varying density. Journal of Sound and Vibration, 2020, vol. 473, art. 115202. https://doi.org/10.1016/j.jsv.2020.115202
  5. Abdelbaki A. R., Paidoussis M. P., Misra A. K. A nonlinear model for a hanging cantilevered pipe discharging fluid with a partially-confined external flow. International Journal of Non-Linear Mechanics, 2020, vol. 118, art. 103290. https://doi.org/10.1016/j.ijnonlinmec.2019.103290
  6. Velmisov P. A., Pokladova Yu. V., Mizher U. J. Mathematical modeling of the mechanical system “pipeline – pressure sensor”. AIP Conference Proceedings, 2019, vol. 2172, pp. 030006-1–030006-12. https://doi.org/10.1063/1.5133495, EDN: PJPWYD
  7. Velmisov P. A., Pokladova Yu. V. Mathematical modelling of the “pipeline – pressure sensor” system. Journal of Physics: Conference Series, 2019, vol. 1353, art. 012085. https://doi.org/10.1088/1742-6596/1353/1/012085, EDN: QDIGJK
  8. Velmisov P. A., Pokladova Yu. V. Mathematical modeling of pressure measurement systems. Vestnik Ul’yanovskogo gosudarstvennogo tekhnicheskogo universiteta [Bulletin of Ulyanovsk State Technical University], 2020, iss. 2–3 (90–91), pp. 10–19 (in Russian). EDN: CCGTAB
  9. Ankilov A. V., Velmisov P. A., Gorboconenko V. D., Pokladova Yu. V. Matematicheskoe modelirovanie mekhanicheskoy sistemy “truboprovod – datchik davleniya” [Mathematical modeling of the mechanical system ”pipeline – pressure sensor”]. Ulyanovsk, Ulyanovsk State Technical University Publ., 2008. 188 p. (in Russian). EDN: QNVYPF
  10. Velmisov P. A., Pokladova Yu. V. Issledovanie dinamiki deformiruemykh elementov nekotorykh aerogidrouprugikh sistem [Study of the dynamics of deformable elements of some aerohydroelastic systems]. Ulyanovsk, Ulyanovsk State Technical University Publ., 2018. 152 p. (in Russian). EDN: VNPZJX
  11. Mihaiov P. G., Mokrov E. A., Mitrohin S. V., Sergeev D. A. Features of metrological maintenance of modern sensors of pulsations of pressure. Izvestiya SFedU. Engineering Sciences, 2012, vol. 5 (130), pp. 174–179 (in Russian). EDN: OYDWKL
  12. Mikhailov P. G., Mokrov E. A., Sergeev D. A., Skotnikov V. V., Petrin V. A., Chernetsov M. A. Sensitive elements of high-temperature pressure sensors. Materials and technologies izgotovleniya. Izvestiya SFedU. Engineering Sciences, 2014, vol. 4 (153), pp. 204–213 (in Russian). EDN: SDJKNB
  13. Pirogov S. P. Manometricheskie trubchatye pruzhiny [Manometric tubular springs]. St. Petersburg, Nedra, 2009. 276 p. (in Russian).
  14. Pirogov S. P., Cherentsov D. A., Chuba A. Yu., Ustinov N. N. Simulation of forced oscillations of pressure monitoring devices. International Journal of Engineering Trends and Technology, 2022, vol. 70, iss. 2, pp. 32–36. https://doi.org/10.14445/22315381/IJETT-V70I2P205, EDN: BYSORN
  15. Etkin L. G. Vibrochastotnye datchiki. Teoriya i praktika [Vibration frequency sensors. Theory and practice], Moscow, Bauman MSTU Publ., 2004. 408 p. (in Russian).
  16. Belozubov E. M., Vasiliev V. A., Zapevalin A. I., Chernov P. S. Design of elastic components of nano- and microelectromechanical systems. Measurement Techniques, 2011, vol. 54, iss. 1, pp. 21–24. EDN: NDWZHT
  17. Dmitrienko A. G., Isakov S. A., Belozubov E. M. Pressure sensors based on nano- and microelectromechanical systems for rocket and aviation technology. Datchiki i sistemy [Sensors and Systems], 2012, iss. 9, pp. 19–25 (in Russian). EDN: PCIXWT
  18. Belozubov E. M., Mokrov E. A., Tikhomirov D. V. Minimizing the error of thin-film strain-resistive pressure sensors under the influence of non-stationary temperature. Datchiki i sistemy [Sensors and Systems], 2004, iss. 1, pp. 26–29 (in Russian). EDN: KWKNDB
  19. Stuchebnikov V., Vaskov Yu., Savchenko E. Special pressure sensors of the MIDA industrial group. Komponenty i tekhnologii [Components and Technologies], 2021, iss. 5 (238), pp. 12–15 (in Russian). EDN: BTNIBZ
  20. Kazaryan A. A., Groshev G. P. Universal pressure transducer. Measurement Techniques, 2008, vol. 51, iss. 3, pp. 269–275. EDN: MVJYGR
  21. Savchenko E. G., Stuchebnikov V. M., Ustinov A. A. Features of the design of high-temperature strain gauge pressure transducers based on SNS structures. Pribory [Instruments], 2016, iss. 3 (189), pp. 1–7 (in Russian). EDN: VSELAP
Received: 
04.12.2023
Accepted: 
13.03.2024
Published: 
29.11.2024