Для цитирования:
Karatetskaia E. Y., Lakshina V. V. Multiple Hedging on Energy Market [Каратецкая Е. Ю., Лакшина В. В. Многократное хеджирование на энергетическом рынке] // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2019. Т. 19, вып. 1. С. 105-113. DOI: 10.18500/1816-9791-2019-19-1-105-113, EDN: TQVEIV
Статья опубликована на условиях лицензии Creative Commons Attribution 4.0 International (CC-BY 4.0).
Опубликована онлайн:
28.02.2019
Полный текст:
(downloads: 187)
Язык публикации:
английский
Рубрика:
Тип статьи:
Научная статья
УДК:
519.25
EDN:
TQVEIV
Multiple Hedging on Energy Market
[Многократное хеджирование на энергетическом рынке]
Авторы:
Каратецкая Ефросиния Юрьевна, Национальный исследовательский университет «Высшая школа экономики»
Лакшина Валерия Владимировна, Национальный исследовательский университет «Высшая школа экономики»
Аннотация:
Статья посвящена расчету динамического коэффициента хеджирования на основании трех многомерных моделей волатильности, среди которых модель на S-BEKK-GARCH, построенная с учетом кросссекционных зависимостей между активами. Стратегия хеджирования рассчитана для 8 пар «актив-фьючерс» энергетического рынка России.
Ключевые слова:
Список источников:
- Cotter J., Hanly J. A utility based approach to energy hedging. Energy Economics, 2012, vol. 34, iss. 3, pp. 817–827.
- Shrestha K., Subramaniam R., Peranginangin Y. Quantile hedge ratio for energy markets. Energy Economics, 2018, vol. 71, iss. 3, pp. 253–272.
- Ederington L. The hedging performance of the new futures markets. The Journal of Finance, 1979, vol. 34, iss. 1, pp. 157–170.
- Mohamed El Hedi Arouri, Jamel Jouini, Duc Khuong Nguyen. On the impacts of oil price fluctuations on European equity markets: Volatility spillover and hedging effectiveness. Energy Economics, 2012, vol. 34, no. 2, iss. 2, pp. 611–617. DOI: https://doi.org/10.1016/j.eneco.2011.08.009
- Khalfaoui R., Boutahar M., Boubaker H. Analyzing volatility spillovers and hedging between oil and stock markets: Evidence from wavelet analysis. Energy Economics, 2015, vol. 49, iss. C, pp. 540–549.
- Billio M., Casarin R., Osuntuyi A. Markov switching GARCH models for Bayesian hedging on energy futures markets. Energy Economics, 2018, vol. 70, iss. C, pp. 545–562.
- Olson E., Vivian A. J., Wohar M. E. The relationship between energy and equity markets: Evidence from volatility impulse response functions. Energy Economics, 2014, vol. 43, iss. C, pp. 297–305.
- Wang Y., Liu L. Crude oil and world stock markets: volatility spillovers, dynamic correlations, and hedging. Empirical Economics, 2016, vol. 50, iss. 4, pp. 1481–1509.
- Walid Mensi, Shawkat Hammoudeh, Sang Hoon Kang. Risk spillovers and portfolio management between developed and BRICS stock markets. The North American Journal of Economics and Finance, 2017, vol. 41, pp. 133–155. DOI: https://doi.org/10.1016/j.najef.2017.03.006
- Ghoddusi H., Emamzadehfard S. Optimal hedging in the US natural gas market: The effect of maturity and cointegration. Energy Economics, 2017, vol. 63, iss. C, pp. 92–105.
- Arnold M., Stahlberg S., Wied D. Modeling different kinds of spatial dependence in stock returns. Empirical Economics, 2013, vol. 44, iss. 2, pp. 761–774.
- Fernández-Avilés G., Montero J., Orlov A. Spatial modeling of stock market comovements. Finance Research Letters, 2012, vol. 9, iss. 4, pp. 202–212.
- Huaying Gu, Zhixue Liu, Yingliang Weng. Time-varying correlations in global real estate markets: A multivariate GARCH with spatial effects approach. Physica A: Statistical Mechanics and its Applications, 2017, vol. 471, pp. 460–472. DOI: https://doi.org/10.1016/j.physa.2016.12.056
- Anatolyev S., Khrapov S. Do spatial structures yield better volatility forecasts? 2016. Available at: https://editorialexpress.com/cgi-bin/conference/download.cgi?db_name=EEA... (accessed 18 May 2018).
- Chen X., Tian Y. Impact Effects and Spatial Volatility Spillover Effects of Sovereign Cred- it Rating Downgrades-Empirical Analysis of Multivariate Spatial-BEKK-GARCH Model Based on Symbolic Transfer Entropy. Bolet ´ in T écnico, 2017, vol. 55, no. 9, pp. 614–623.
- Fernández V. Multi-period hedge ratios for a multi-asset portfolio when accounting for returns comovement. The Journal of Futures Markets, 2008, vol. 28, iss. 2, pp. 182–207.
- Massimiliano Caporin, Paolo Paruolo. Proximity-Structured Multivariate Volatility Models. Econometric Reviews, 2015, vol. 34, iss. 5, pp. 559–593. DOI: https://doi.org/10.1080/07474938.2013.807102
- Luc Bauwens, Sébastien Laurent, Jeroen V. K. Rombouts. Multivariate GARCH models: a survey. Journal of Applied Econometrics, 2006, vol. 21, iss. 1, pp. 79–109. DOI: https://doi.org/10.1002/jae.842
- Borovkova S. A., Lopuhaa Rik. Spatial GARCH: A Spatial Approach to Multivariate Volatility Modeling. Econometric Reviews, 2015, vol. 34, iss. 5, pp. 559–593. DOI: https://doi.org/10.1080/07474938.2013.807102
- Robert F. Engle, Kenneth F. Kroner. Multivariate Simultaneous Generalized ARCH. Econometric Theory, 1995, vol. 11, iss. 1, pp. 122–150. DOI: https://doi.org/10.1017/s0266466600009063
- Engle R. Dynamic Conditional Correlation. Journal of Business & Economic Statistics, 2002, vol. 20, no. 3, iss. 3, pp. 339–350. DOI: https://doi.org/10.1198/073500102288618487
- van der Weide R. GO-GARCH: a multivariate generalized orthogonal GARCH model. Journal of Applied Econometrics, 2002, vol. 17, iss. 5, pp. 549–564. DOI: https://doi.org/10.1002/jae.688
- Cont R. Empirical properties of asset returns: stylized facts and statistical issues. Quantitative Finance, 2001, vol. 1, iss. 2, pp. 223–236.
- Bessembinder H., Seguin Paul J. Price Volatility, Trading Volume, and Market Depth: Evidence from Futures Markets. The Journal of Financial and Quantitative Analysis, 1993, vol. 28, iss. 1, pp. 21–39.
Поступила в редакцию:
14.08.2018
Принята к публикации:
01.10.2018
Опубликована:
28.02.2019
Краткое содержание:
(downloads: 155)
- 1549 просмотров