Известия Саратовского университета. Новая серия.

Серия Математика. Механика. Информатика

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


Для цитирования:

Окулов Н. А. Течение материала Слибара–Паслая в плоском канале // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2012. Т. 12, вып. 1. С. 80-88. DOI: 10.18500/1816-9791-2012-12-1-80-88

Опубликована онлайн: 
24.02.2012
Полный текст в формате PDF(Ru):
(downloads: 36)
Язык публикации: 
русский
Рубрика: 
УДК: 
539.374+517.958
DOI: 
10.18500/1816-9791-2012-12-1-80-88

Течение материала Слибара–Паслая в плоском канале

Авторы: 
Окулов Николай Алексеевич, Российский государственный социальный университет
Аннотация: 

Рассматривается вопрос о численном моделировании неустановившегося течения вязкопластического материала в плоском канале. Определяющие соотношения принимаются в форме Слибара–Паслая. Задача решается в напряжениях. Доказана теорема о слабом разрыве на границах раздела жестких и вязкопластических зон. Предложен оригинальный численный метод решения задачи. Приведены результаты численного моделирования. 

Список источников: 
  1. Slibar A., Paslay P. R. Retarded Flow of Bingam Materials // J. of Appl. Mech. 1959. Vol. 26. P. 107–113.
  2. Сафрончик М. И. Торможение пластины о слой «за- паздывающей» вязкопластичной среды с учетом при- стенного скольжения // Изв. Сарат. ун-та. Нов. сер. 2009. Т. 9. Сер. Математика. Механика. Информати- ка, вып. 2. C. 88–93.
  3. Окулова Н. Н. Численно-аналитическое исследова- ние задачи о распределениии напряжений в вязкопла- стической полосе // Вестн. Самар. ун-та. Естественно- научная сер. 2007. № 6. C. 78–84.
  4. Окулов Н. А. Об одном численном методе решения одномерных задач типа Стефана // Вычислительные методы и программирование. 2011. Т. 12. C. 238–246.
  5. Окулов Н. А. Упругий удар по вязкопластическому стержню // Вычисл. мех. сплош. сред. 2011. Т. 4, № 2. С. 96–109