Известия Саратовского университета. Новая серия.
ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


пространства Соболева

Двоичные базисные сплайны в кратномасштабном анализе

B-сплайны были введены Карри и Шёнбергом. Построенные на равномерной сетке и определенные в терминах сверток, такие сплайны порождают КМА Рисса. В статье рассмотрены сплайны $\varphi_n$, которые получаются  $n$-кратным интегрированием функции Уолша с номером $2^n-1$. Эти сплайны в статье названы двоичными базисными сплайнами. Ранее было доказано, что двоичные базисные сплайны образуют базис в пространстве функций, непрерывных на отрезке $[0, 1]$ и обращающихся в 0 за его пределами.

Доминантные оценки роста интегранта и гладкость вариационных функционалов в пространствах Соболева

Для вариационных функционалов в пространствах Соболева {W1,p} (1 ≤ p < ∞) вводится последовательность так называемых «доминантных оценок роста» градиента соответствующего порядка от интегранта, каждая из которых гарантирует соответствующий уровень гладкости вариационного функционала в C1 -гладких точках пространства Соболева. Частными случаями доминантных оценок роста являются изученные ранее K-псевдополиномиальные представления интегранта.

О двоичных базисных сплайнах 2-й степени

Классические B-сплайны определяются как свертка Bn+1 = Bn ∗ B0, где B0 есть характеристическая функция единичного отрезка. Классический B-сплайн является масштабирующей функцией и удовлетворяет неравенству Рисса. Поэтому классический B-сплайн любого порядка порождает кратномасштабный анализ (КМА) Рисса. В статье рассмотрен новый вид В-сплайнов, которые получаются двукратным интегрированием 3-й функции Уолша. Указан алгоритм построения интерполяционного сплайна второй степени по двоичной системе узлов. Получена оценка интерполяции.