Известия Саратовского университета. Новая серия.
ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


симплекс

Сохранение ориентации симплекса при квазиизометричном отображении

Статья посвящена проблеме сохранения ориентации симплекса при квазиизометричном отображении в Rn. Данная проблема возникает в задачах построения расчетных сеток с помощью отображений различных классов. Найдены условия на отображение, обеспечивающие сохранение ориентации.

Коэффициент изопериметричности симплекса в задаче аппроксимации производных

В статье вводится величина σ(G) = |∂G|n/(n−1)/|G| коэффициента изопериметричности области G ⊂ Rn. В терминах этой величины получены оценки погрешности δΔ(f) вычисления градиента при кусочно-линейной интерполяции функций классов C1(G), C2(G), C1,α(G), 0 < α < 1. Задача получения таких оценок нетривиальна, особенно в многомерном случае. Здесь надо отметить, что в двумерном случае для функций класса C2(G) сходимость производных обеспечивается классическим условием Делоне.

О геометрических свойствах непрерывных отображений, сохраняющих ориентацию симплексов

Несложно показать, что если непрерывное и открытое отображение сохраняет ориентацию всех симплексов, то оно является аффинным. В статье рассматривается класс непрерывных, открытых отображений f : D ⊂ R m → R n , сохраняющих ориентацию симплексов из заданного подмножества множества симплексов с вершинами в области D ⊂ R m . В работе исследуются вопросы геометрического строения линейных прообразовтаких отображений.

Эрмитова интерполяция на симплексе

В статье рассмотрена задача полиномиальной интерполяции и аппроксимации функций многих пере-менныхнаn-мерном симплексе в равномерной норме посредством многочленов 3-йстепени.Выбраны интерполяционные условия в терминах производных по направлениям ребер симплекса. В этих же терминах получены оценки отклонения производных многочлена от соответствующих производных интерполируемой функции в предположении,что интерполируемая функция имеет непрерывные производные по направлениям до 4-го порядка включительно.

Некоторые свойства 0/1-симплексов

Пусть n ∈ N, Q n = [0,1] n . Для n-мерного невырожденного симплекса S под σS понимается результат гомотетии S относительно центра тяжести с коэффициентом гомотетии σ. Положим ξ(S) = min{σ > 1 : Q n ⊂ σS}, ξ n = min{ξ(S) : S ⊂ Q n}. Через P обозначим интерполяционный проектор, действующий из C(Q n ) на пространство линейных функций от n переменных, узлы которого совпадают с вершинами симплекса S ⊂ Q n . Пусть kPk — норма P как оператора из C(Q n ) в C(Q n ), θ n = minkPk. и симплекса S ⊂ Q n .