Известия Саратовского университета. Новая серия.
ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


уравнение Левнера

О решениях уравнения Лёвнера с составными управляющими функциями

В статье рассматривается хордовое дифференциальное уравнение Лёвнера с управлением, заданным разными функциями на частях отрезка интегрирования. Получены точные решения в явном или неявном виде для кусочно-постоянной управляющей функции, а также управления, заданного как комбинация постоянной функции и квадратного корня. Для обоих случаев дано аналитическое и геометрическое описания генерируемых разрезов.

Определение границы в локальной гипотезе Хажинского–Тамми для пятого коэффициента

В статье найдено точное значениеM5 такое, что симметризованнаяфункция Пика PM4(z) является экстремальной в локальной гипотезе Хажинского–Тамми для пятого коэффициента тейлоровского разложения голоморфной нормированной ограниченной однолистной функции

Интегралы уравнения Левнера со степенной управляющей функцией

Рассматривается качественное локальное поведение траекторий обыкновенного дифференциального уравнения Левнера с управляющей функцией, обратной к степенной функции, с целым показателем степени. Выделены все особые точки и соответствующие им сингулярные решения. Показано, что эта управляющая функция порождает решения уравнения Левнера, которые представляют собой отображения полуплоскости с гладким разрезом на верхнюю полуплоскость. Найдено асимптотическое соотношение между гармоническими мерами сторон разреза.

Интегрируемость частного вида уравнения Лёвнера

Приводится решение в квадратурах частного случая уравнения Лёвнера для полуплоскости.

Области значений в классах конформных отображений

Обзор преимущественно посвящен недавним результатам в решении задачи об областях значений в различных классах голоморфных однолистных функций, представимых решениями дифференциальных уравнений Левнера как в радиальной, так и в хордовой версиях. Важно также представить классические и современные методы решения и сравнить их эффективность. Наиболее подробно затронуты методы оптимизации и, в частности, принцип максимума Понтрягина.