Для цитирования:
Челноков Ю. Н., Нелаева Е. И. Бикватернионное решение кинематической задачи оптимальной нелинейной стабилизации произвольного программного движения свободного твердого тела // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2016. Т. 16, вып. 2. С. 198-207. DOI: 10.18500/1816-9791-2016-16-2-198-207, EDN: WCNQLP
Бикватернионное решение кинематической задачи оптимальной нелинейной стабилизации произвольного программного движения свободного твердого тела
Рассматривается в бикватернионной постановке кинематическая задача оптимальной нелинейной стабилизации произвольного программного движения свободного твердого тела. В качестве математической модели движения используется бикватернионное кинематическое уравнение возмущенного движения свободного твердого тела в двух различных формах, а в качестве управления — мгновенный винт скоростей движения тела. Каждый из минимизируемых функционалов характеризует собой интегральную величину энергетических затрат на управление и квадратичных отклонений параметров движения свободного твердого тела от их программных значений. С помощью принципа максимума Понтрягина построены законы оптимального управления и дифференциальные уравнения задачи оптимизации. Найдено аналитическое решение этой задачи. Приводятся результаты применения найденного закона кинематического управления к решению обратной задачи кинематики стэнфордского манипулятора.
- Бранец В. Н., Шмыглевский И. П. Применение кватернионов в задачах управления положением твердого тела // Изв. АН СССР. МТТ. 1972. № 4. С. 24–31.
- Бранец В. Н., Шмыглевский И. П. Кинематическая задача ориентации во вращающейся системе координат // Изв. АН СССР. МТТ. 1972. № 6. С. 36–43.
- Бранец В. Н., Шмыглевский И. П. Применение кватернионов в задачах ориентации твердого тела. М. : Наука, 1973. 320 с.
- Плотников П. К., Сергеев А. Н., Челноков Ю. Н. Кинематическая задача управления ориентацией твердого тела // Изв. АН СССР. МТТ. 1991. № 5. C. 9–18.
- Панков А. А., Челноков Ю. Н. Исследование кватернионных законов кинематического правления ориентацией твердого тела по угловой скорости // Изв. РАН. МТТ. 1995. № 6. C. 3–13.
- Бранец В. Н., Шмыглевский И. П. Введение в теорию бесплатформенных инерциальных авигационных систем. М. : Наука, 1992. 280 с.
- Молоденков А. В. Кватернионное решение задачи оптимального разворота твердого тела со сферическим распределением масс // Проблемы механики и управления : межвуз. сб. науч. тр. Пермь : Изд-во ПГУ, 1995. С. 122–131.
- Бирюков В. Г., Челноков Ю. Н. Кинематическая задача оптимальной нелинейной стабилизации углового движения твердого тела // Математика. Механика : сб. науч. тр. Саратов : Изд-во Сарат. ун-та, 2002. Вып. 4. С. 172–174.
- Маланин В. В., Стрелкова Н. А. Оптимальное управление ориентацией и винтовым движением твердого тела. М.; Ижевск : НИЦ «Регулярная и хаотическая динамика», 2004. 204 с.
- Челноков Ю. Н. Кватернионные и бикватернионные модели и методы механики твердого тела и их приложения. Геометрия и кинематика движения. М. : Физматлит, 2006. 511 с.
- Стрелкова Н. А. Оптимальное по быстродействию кинематическое управление винтовым перемещением твердого тела // Изв. АН СССР. МТТ. 1982. № 4. C. 73–76.
- Челноков Ю. Н. Об интегрировании кинематических уравнений винтового движения твёрдого тела // ПММ. 1980. T. 44, вып. 1. C. 32–39.
- Челноков Ю. Н. Бикватернионное решение кинематической задачи управления движением твердого тела и его приложение к решению обратных задач кинематики роботов-манипуляторов // Изв. РАН. МТТ. 2013. № 1. С. 38–58.
- Ломовцева Е. И., Челноков Ю. Н. Дуальные матричные и бикватернионные методы решения прямой и обратной задач кинематики роботов-манипуляторов на примере стэнфордского манипулятора. II // Изв. Сарат. ун-та. Нов. сер. Сер. Математика. Механика. Информатика. 2014. Т. 14, вып. 1. С. 88–95.
- Нелаева Е. И., Челноков Ю. Н. Решение прямых и обратных задач кинематики роботов- манипуляторов с использованием дуальных матриц и бикватернионов на примере стэнфордского манипулятора. Ч. 1 // Мехатроника, автоматизация, управление. 2015. Т. 16, № 6. С. 373–380. DOI: https://doi.org/10.17587/mau.16.373-380
- 1473 просмотра