Известия Саратовского университета. Новая серия.
ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


Математика

Некоторые вопросы теоретико-числового метода в приближенном анализе

В данной работе дается обзор некоторых актуальных проблем метода оптимальных коэффициентов Н. М. Коробова. Данный обзор был сделан 12 сентября 2013 года в г. Саратове на XI Международной конференции «Алгебра и теория чисел: современные проблемы и приложения».

Об одной аддитивной задаче с бесквадратными числами

В работе получена асимптотическаяформула для количества представлений натурального числа N в виде q1+q2+[αq3],где q1, q2, q3 –- бесквадратные числа, α > 1 –- фиксированное иррациональное алгебраическое число.

Об арифметических свойствах обобщенной последовательности Фибоначчи и их следствиях

В работе изучены некоторые свойства распределения членов обобщенной последовательности Фибоначчи по бесквадратному модулю и получены следствия из этих свойств.

О многообразиях группоидов отношений с диофантовыми операциями

В работе находятся базисы тождеств многообразий, порожденных классами группоидов бинарных отношений c диофантовыми операциями.

Полупростые градуированные кольца

Получен градуированный аналог теоремы Веддерберна–Артина, дающий описание полупростых G-градуированных колец для произвольной группы G. Дана гомологическая классификация полупростых градуированных колец.

Некоторые специальные двумерные ряды по системе {sin x sin kx } и их аппроксимативные свойства

В настоящей статье вводятся двумерные специальные ряды по системе {sin x sin kx}. Показано, что эти ряды выгодно отличаются от двумерных косинус-рядов Фурье тем, что их частичные суммы вблизи границы квадрата [0, π]2 обладают значительно лучшими аппроксимативными свойствами, чем суммы Фурье. Приводится оценка скорости сходимости частичных сумм специального ряда к функциям f(x, y) из пространства четных 2π-периодических по каждой переменной непрерывных функций.

Дискретные преобразования со свойством прилипания на основе системы {sin x sin kx } и системы полиномов Чебышёва второго рода

В настоящей статье вводятся дискретные ряды со свойством «прилипания» для периодического (по системе {sin x sin kx}) и непереодического (по системе полиномов Чебышёва второго рода Uk(x)) случаев. Показано, что дискретные ряды со свойством прилипания по системе {sin x sin kx} выгодно отличаются от косинус-рядов Фурье тем, что их частичные суммы вблизи границ отрезка [0, π] обладают значительно лучшими аппроксимативными свойствами.

О равномерной ограниченности некоторых семейств интегральных операторов свертки в весовых пространствах Лебега с переменным показателем

Пусть для λ > 1 задана измеримая 2π-периодическая и существенно ограниченная функция (ядро) kλ = kλ(x). Исследуются условия на вес w(x) и ядра {kλ(t)}λ>1, при которых семейство операторов свертки {Kλf(x) : Kλf(x) = REf(t)kλ(t − x) dt}λ>1 (E = [−π, π]) равномерно ограничено в весовых пространствах Лебега с переменным показателем — L p(x)2π,w.

Решение алгебраических уравнений непрерывными дробями Никипорца

Приводятся аналитические выражения, представляющие все корни произвольного алгебраического уравнения n-й степени через коэффициенты исходного уравнения. Эти формулы состоят из двух отношений бесконечных определителей Теплица, диагональными элементами которых являются коэффициенты алгебраического уравнения. Для нахождения комплексных корней дополнительно используется метод суммирования расходящихся непрерывных дробей.

Промежуточный случай регулярности в задаче дифференцирования кратных интегралов

В работе обобщаются теоремы Лебега и Иессена – Марцинкевича – Зигмунда о дифференцировании неопределенных интегралов в RN на случай промежуточной регулярности системы множеств. Рассматриваются приложения полученных результатов к разложению в ряд Фурье – Хаара и орторекурсивному разложению по системе брусов.

Страницы