Известия Саратовского университета. Новая серия.
ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


Математика

О количестве простых делителей целого числа с ограчением кратности

В данной статье исследуются обобщения числовых функции, связанные с количеством простых делителей заданного числа. Получены верхние и нижние предельные значения, а также асимптотические фрмулы для средних значений количества простых делителей, входящие в целое число с ограничением кратности.

Корректность задачи Дирихле в цилиндрической области для многомерного эллиптико-параболического уравнения

В работе для модельного многомерного эллиптико-параболического уравнения показана однозначная разрешимость классического решения задачи Дирихле в цилиндрической области.

Смешанная задача для простейшего гиперболического уравнения первого порядка с инволюцией

Исследуется смешанная задача для дифференциального уравнения первого порядка с инволюцией в потенциале и с периодическими краевыми условиями. Получены уточненные асимптотические формулы для собственных значений и собственных функций соответствующей спектральной задачи, на основе которых проводится обоснование применения метода Фурье.

Проективное и инъективное описания в комплексной области. Двойственность

 Исследования инвариантных подпространств дифференциальных операторов бесконечного порядка в комплексной области породили целый ряд вопросов, связанных с переходом к двойственным задачам. Настоящая работа посвящена преодолению этих трудностей.

Асимптотические свойства и весовые оценки полиномов, ортогональных на неравномерной сетке с весом Якоби

Работа посвящена исследованию свойств полиномов, образующих ортонормированную систему с весом Якоби на произвольной (не обязательно равномерной) сетке такой, что . В случае целых для построенных таким образом дискретных ортонормированных полиномов при получена асимптотическая формула вида в которой классический полином Якоби, остаточный член. В качестве следствия асимптотической формулы получена весовая оценка полиномов  на отрезке [−1,1]. 

Об обратной задаче для дифференциальных операторов на графе-еже

 Исследуется обратная спектральная задача для дифференциальных операторов Штурма–Лиувилля на графе-еже с обобщенными условиями склейки во внутренних вершинах и с краевыми условиями Дирихле в граничных вершинах. Приведена теорема единственности восстановления потенциалов по заданным спектральным характеристикам, получено конструктивное решение обратной задачи. 

О гармоническом анализе периодических на бесконечности функций

В работе изучаются медленно меняющиеся и периодические на бесконечности функции нескольких переменных со значениями в банаховом пространстве. Вводится понятие ряда Фурье периодической на бесконечности функции, изучаются свойства рядов Фурье и вопросы сходимости. Основные результаты статьи получены с существенным использованием теории изометрических представлений. 

Параболические параллелограммы плоскости Ĥ

На гиперболической плоскости Ĥ положительной кривизны в модели Кэли–Клейна исследованы параболические параллелограммы. Проведена их классификация, получены метрические соотношения между величинами углов и выражения длин ребер через меры углов при вершинах.

Об одном эквиваленте расширенной гипотезы Римана для L-функций Дирихле числовых полей

Для L-функций Дирихле числовых полей получено условие на сумматорнуюфункцию, рассматриваемую на множестве простых идеалов, эквивалентное расширенной гипотезе Римана. Изучаются аналитические свойства эйлеровых произведений, связанных с этим эквивалентом.

К задаче о целостности L-функции Артина В. Н.

В работе определяется класс L-функций Артина, которые являются мероморфными функциями, полюсы которых лежат на критической прямой Re s = 1/2 и совпадают с нулями Z-функций Дедекинда некоторых числовых полей.

Страницы