For citation:
Choque-Rivero A. E., Ornelas-Tellez F. Bounded finite-time stabilization of the prey – predator model via Korobov’s controllability function. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2021, vol. 21, iss. 1, pp. 76-87. DOI: 10.18500/1816-9791-2021-21-1-76-87, EDN: OPKVIW
Bounded finite-time stabilization of the prey – predator model via Korobov’s controllability function
The problem of finite-time stabilization for a Leslie-Gower prey – predator system through a bounded control input is solved. We use Korobov’s controllability function. The trajectory of the resulting motion is ensured for fulfilling a physical restriction that prey and predator cannot achieve negative values. For this purpose, a certain ellipse depending on given data and the equilibrium point of the considered system is constructed. Simulation results show the effectiveness of the proposed control methodology.
- Collings J. B. The effects of the functional response on the bifurcation behavior of a mite predator – prey interaction model. Journal of Mathematical Biology, 1997, vol. 36, iss. 2, pp. 149–168. https://doi.org/10.1007/s002850050095
- Li Y., Xiao D. Bifurcations of a predator – prey system of Holling and Leslie types. Chaos, Solitons and Fractals, 2007, vol. 34, iss. 2, pp. 606–620. https://doi.org/10.1016/j.chaos.2006.03.068
- Jiang J., Song Y. Stability and bifurcation analysis of a delayed Leslie – Gower predator – prey system with nonmonotonic functional response. Abstract and Applied Analysis, 2013, vol. 2013, Article ID 152459. https://doi.org/10.1155/2013/152459
- Gakkhar S., Singh A. Complex dynamics in a prey predator system with multiple delays. Communications in Nonlinear Science and Numerical Simulation, 2012, vol. 17, iss. 2, pp. 914–929. https://doi.org/10.1016/j.cnsns.2011.05.047
- Leslie P., Gower J. The properties of a stochastic model for the predator – prey type of interaction between two species. Biometrika, 1960, vol. 47, iss. 3–4, pp. 219–234. https://doi.org/10.1093/biomet/47.3-4.219
- Pielou E. C. An Introduction to Mathematical Ecology. New York, Wiley-Interscience, 1969. 294 p.
- Korobov V. I. A general approach to the solution of the problem of synthesizing bounded controls in a control problem. Matematicheskii Sbornik (N. S.), 1979 , vol. 109, no. 4 (8), pp. 582–606 (in Russian). English transl.: Mathematics of the USSR-Sbornik, 1980, vol. 37, no. 4, pp. 535–557. https://doi.org/10.1070/SM1980v037n04ABEH002094
- Korobov V. I. Controllability Function Method. Moscow, Izhevsk, Institut komp’iuternykh issledovaniy, 2007. 576 p. (in Russian).
- Korobov V. I., Skoryk V. O. Construction of restricted controls for a non-equilibrium point in global sense. Vietnam Journal of Mathematics, 2015, vol. 43, iss. 2, pp. 459–469. https://doi.org/10.1007/s10013-015-0132-4
- Polyakov A., Efimov D., Perruquetti W. Finite-time stabilization using implicit Lyapunov function technique. IFAC Proceedings Volumes, 2013, vol. 46, iss. 23, pp. 140–145. https://doi.org/10.3182/20130904-3-FR-2041.00043
- Korobov V. I., Sklyar G. M. Methods for constructing positional controls, and a feasible maximum principle. Differential Equations, 1990, vol. 26, no. 11, pp. 1422–1431.
- Korobov V. I., Korotyaeva Y. V. Feedback control design for systems with x-discontinuous rigt-hand side. Journal of Optimization Theory and Applications, 2011, vol. 149, pp. 494– 512. https://doi.org/10.1007/s10957-011-9800-z
- Singh A. Stabilization of prey predator model via feedback control. In: J. Cushing, M. Saleem, H. Srivastava, M. Khan, M. Merajuddin, eds. Applied Analysis in Biological and Physical Sciences. Springer Proceedings in Mathematics & Statistics, vol. 186. Springer, New Delhi, 2016, pp. 177–186. https://doi.org/10.1007/978-81-322-3640-5_10
- Kamenkov G. On stability of motion over a finite interval of time. Akad. Nauk SSSR. Prikladnaya Matematika i Mekhanika, 1953, vol. 17, pp. 529–540 (in Russian).
- Weiss L., Infante E. F. Finite time stability under perturbing forces and product spaces. IEEE Transactions on Automatic Control, 1967, vol. 12, iss. 1, pp. 54–59. https://doi.org/10.1109/TAC.1967.1098483
- LaSalle J., Letfschetz S. Stability by Liapunov’s Direct Method with Applications. New York, London, Academic Press, 1961. 134 p.
- Dorato P., Weiss L., Infante E. Comment on “Finite-time stability under perturbing forces and on product spaces”. IEEE Transactions on Automatic Control, 1967, vol. 12, iss. 3, pp. 340–340. https://doi.org/10.1109/TAC.1967.1098569
- Dorato P. An Overview of Finite-Time Stability. In: L. Menini, L. Zaccarian, C. T. Abdallah, eds. Current Trends in Nonlinear Systems and Control. Systems and Control: Foundations & Applications. Birkhauser Boston, 2006, pp. 185–194. https://doi.org/10.1007/0-8176-4470-9_10
- Bath S. P., Berstein D. S. Lyapunov analysis of finite-time differential equations. Proceedings of 1995 American Control Conference — ACC’95. Seattle, WA, USA, 1995, vol. 3, pp. 1831–1832. https://doi.org/10.1109/ACC.1995.531201
- Poznyak A. S., Polyakov A. Y., Strygin V. V. Analysis of finite-time convergence by the method of Lyapunov functions in systems with second-order sliding modes. Journal of Applied Mathematics and Mechanics, 2011, vol. 75, iss. 3, pp. 289–303. https://doi.org/10.1016/j.jappmathmech.2011.07.006
- Choque Rivero A. E., Korobov V. I., Skoryk V. O. The controllability function as the time of motion. I. Matematicheskaya Fizika, Analiz, Geometriya [Journal of Mathematical Physics, Analysis, Geometry], 2004, vol. 11, no. 2, pp. 208–225 (in Russian). English transl.: https://arxiv.org/abs/1509.05127
- Choque Rivero A. E., Korobov V. I., Skoryk V. O. The controllability function as the time of motion. II. Matematicheskaya Fizika, Analiz, Geometriya [Journal of Mathematical Physics, Analysis, Geometry], 2004, vol. 11, no. 3, pp. 341–354 (in Russian).
- Choque Rivero A. E. The controllability function method for the synthesis problem of a nonlinear control system. International Review of Automatic Control, 2008, vol. 1, no. 4, pp. 441–445.
- Yefimov N. A. Quadratic Forms and Matrices: An Introduction Approach. New York, London, Academic Press, 1964. 164 p.
- 1709 reads