Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Prokhorov D. V., Dudov S. I., Zakharov A. M., Poplavskii V. B., Rozen V. V., Sidorov S. P. In Memory of Alexandr Yu. Vasiliev. Izv. Sarat. Univ. Math. Mech. Inform., 2017, vol. 17, iss. 1, pp. 117-121.

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
22.02.2017
Full text:
(downloads: 46)
Language: 
Russian
Heading: 

In Memory of Alexandr Yu. Vasiliev

Autors: 
Prokhorov Dmitri Valentinovich, Saratov State University
Dudov Sergey Ivanovitch, Saratov State University
Zakharov Andrei Mikhailovich, Saratov State University
Poplavskii Vladislav Bronislavovich, Saratov State University
Rozen Viktor Vladimirovich, Saratov State University
Sidorov Sergei Petrovich, Saratov State University
Abstract: 

The article was written in memory of Alexandr Yu. Vasiliev, who died suddenly on October 20, 2016 at the 55th year of his life.

Key words: 
References: 
  1. Васильев А. Ю. Взаимное изменение начальных коэффициентов однолистных функций // Матем. заметки. 1985. Т. 38, № 1. С. 56–65. (English transl.: Math. Notes. 1985. Vol. 38, iss. 1. P. 543–548. DOI: https://doi.org/10.1007/BF01137465.)
  2. Васильев А. Ю. Вариационные методы и изопериметрические теоремы покрытия для однолистных функций // Изв. вузов. Математика. 1988. № 1. С. 14–18. (English transl.: Soviet Math. 1988. Vol. 32, iss. 1. P. 14–18.)
  3. Васильев А. Ю. Методы оптимального управления в экстремальной задаче на классе решений уравнения Левнера – Куфарева // Дифференц. уравнения. 1990. Т. 26, № 3. С. 386–392. (English transl.: Diff. Equ. 1990. Vol. 26, iss. 3, P. 280–294.)
  4. Васильев А. Ю., Федоров С. И. Метод модулей в приложении к экстремальной задаче для конформных отображений // Изв. вузов. Математика. 1990. № 8. С. 13–22 (English transl.: Soviet Math. 1990. Vol. 34, № 8. P. 13–22.)
  5. Pommerenke Ch., Vasil’ev A. Angular derivatives of bounded univalent functions and extremal partitions of the unit disk // Pacific J. Math. 2002. Vol. 206, № 2. P. 425–450. 
  6. Vasil’ev A. On distortion under bounded univalent functions with the angular derivative fixed // Compl. Var. 2002. Vol. 47, № 2. P. 131–147.
  7. Vasil’ev A. Moduli of Families of Curves for Conformal and Quasiconformal Mappings. Lecture Notes in Mathematics. Vol. 1788. Berlin ; New York : Springer-Verlag, 2002. 212 p.
  8. Hidalgo R., Vasil’ev A. Harmonic moduli of families of curves on Teichmuller spaces // ¨ Scientia. Ser.A, Math. Sci. 2002. Vol. 8. P. 89–107.
  9. Hidalgo R., Vasil’ev A. Noded Teichmuller spaces // J. Anal. Math. 2006. Vol. 99. ¨ P. 63–73.
  10. Hohlov Yu., Prokhorov D., Vasil’ev A. On geometrical properties of free boundaries in the Hele-Shaw flows moving boundary problem // Lobachevskii J. Math. 1998. Vol. 1. P. 3–13.
  11. Vasil’ev A., Kornev K. Geometric properties of the solutions of a Hele-Shaw type equation // Proc. Amer. Math. Soc. 2000. Vol. 128, № 9. P. 2683–2685.
  12. Gustafsson B., Prokhorov D., Vasil’ev A. Infinite lifetime for the starlike dynamics in Hele-Shaw cells // Proc. Amer. Math. Soc. 2004. Vol. 132, № 9. P. 2661–2669.
  13. Gustafsson B., Vasil’ev A. Nonbranching weak and starshaped strong solutions for Hele – Shaw dynamics // Arch. Math. (Basel). 2005. Vol. 84, № 6. P. 551–558.
  14. Gustafsson B., Vasil’ev A. Conformal and Potential Analysis in Hele – Shaw Cells. Basel ; Boston ; Berlin : Birkhauser Verlag, 2006. 231 p. ¨
  15. Prokhorov D., Vasil’ev A. Univalent functions and integrable systems // Comm. Math. Phys. 2006. Vol. 262, № 2. P. 393–410.
  16. Hidalgo R., Markina I., Vasil’ev A. Finite dimensional grading of the Virasoro algebra // Georgian Math. J. 2007. Vol. 14, № 3. P. 419–434.
  17. Vasil’ev A. Energy characteristics of subordination chains // Ark. Mat. 2007. Vol. 45. P. 141–156.
  18. Markina I., Vasil’ev A. Virasoro algebra and dynamics in the space of univalent functions // Contemp. Math. 2010. Vol. 525. P. 85–116.
  19. Pavlov M., Prokhorov D., Vasil’ev A., Zakharov A.Lowner evolution and finite-dimensional ¨ reduction of integrable systems // Theor. Math. Phys. 2014. Vol. 181, № 1. P. 1262–1277.
  20. Markina I., Vasil’ev A. Evolution of smooth shapes and integrable systems // Comput. Methods Funct. Theory. 2016. Vol. 16, № 2. P. 203–229.
  21. Markina I., Prokhorov D., Vasil’ev A. Sub-Riemannian geometry of the coefficients of univalent functions // J. Funct. Anal. 2007. Vol. 245, № 2. P. 475–492.
  22. Chang D.-Ch., Markina I., Vasil’ev A. Sub-Lorentzian geometry on anti-de Sitter space // J. Math. Pures Appl. 2008. Vol. 90, № 1. P. 82–110.
  23. Chang D.-Ch., Markina I., Vasil’ev A. Hopf fibration : geodesics and distances // J. Geom. Phys. 2011. Vol. 61. P. 986–1000.
  24. Grong E., Markina I., Vasil’ev A. Sub-Riemannian geometry on infinite-dimensional manifolds // J. Geom. Anal. 2015. Vol. 25, № 4. P. 2474–2515.
  25. Brakalova M., Markina I., Vasil’ev A. Modules of systems of measures on polarizable Carnot groups // Ark. Mat. 2016. Vol. 54, № 2. P. 371–401.
  26. Prokhorov D., Vasil’ev A. Singular and tangent slit solutions to the Loewner equation // Analysis and Mathematical Physics. Trends in Mathematics. Basel : Birkhauser, 2009. ¨ P. 455–463.
  27. Ivanov G., Vasil’ev A. Lowner evolution driven by a stochastic boundary point // Anal. ¨ Math. Phys. 2011. Vol. 1, № 4. P. 387–412.
  28. Ivanov G., Prokhorov D., Vasil’ev A. Non-slit and singular solutions to the Loewner equation // Bull. Sci. Math. 2012. Vol. 136, № 3. P. 328–341.
  29. Bracci F., Contreras M., D´iaz-Madrigal S., Vasil’ev A. Classical and stochastic Lowner – ¨ Kufarev equations // Harmonic and Complex Analysis and its Applications. Trends in Mathematics. Basel : Birkhaiser, 2013. P. 39–134. ¨
  30. Ivanov G., Kang N.-G., Vasil’ev A. Slit holomorphic stochastic flows and Gaussian free field // Compl. Anal. Oper. Theory. 2016. Vol. 10, № 7. P. 1591–1617.
  31. Gustaffson B., Teodorescu R., Vasil’ev A.Classical and Stochastic Laplasian Growth. Heidelberg : Birkhaser Verlag, 2015. 315 p.