Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Vatulyan A. O., Yurov V. O. On a new approach to identifying inhomogeneous mechanical properties of elastic bodies. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2024, vol. 24, iss. 2, pp. 209-221. DOI: 10.18500/1816-9791-2024-24-2-209-221, EDN: WILEKW

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
31.05.2024
Full text:
(downloads: 116)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
539.3
EDN: 
WILEKW

On a new approach to identifying inhomogeneous mechanical properties of elastic bodies

Autors: 
Vatulyan Alexander Ovanesovitsch, Southern Federal University
Yurov Victor Olegovych, Southern Mathematical Institute — the Affiliate of Vladikavkaz Scientific Centre of Russian Academy of Sciences
Abstract: 

A new approach to solving the problem of identifying the variable characteristics of an inhomogeneous elastic isotropic body is presented. The most common formulations of problems on determining variable mechanical characteristics (the Lamé parameters and density are functions of coordinates) are presented. The inverse problem of identifying properties, due to its significant nonlinearity, is usually solved iteratively, with each iteration requiring the solution of a direct problem for some initial approximation and a system of the Fredholm integral equations of the first kind with smooth kernels to find corrections. This approach, in turn, requires specifying the displacement field in the area in which the loading occurs. An approach is proposed on the basis of which it is possible to carry out reconstruction by obtaining additional information about the displacement field in an area other than the loading area in a narrower search space. An example of such a reconstruction is presented in the problem of longitudinal vibrations of an inhomogeneous rod, where the amplitude-frequency response is specified at the internal point of the rod, and the loading is implemented at the end. The results of computational experiments on the reconstruction of the elasticity modulus and density in the form of two functions of the longitudinal coordinate are presented.

Acknowledgments: 
This work was supported by the Russian Science Foundation (project No. 22-11-00265, https://rscf.ru/project/22-11-00265/) in Southern Federal University.
References: 
  1. Tikhonov A. N., Arsenin V. Ya. Metody resheniya nekorrektnykh zadach [Methods for Solving Ill-posed Problems]. Moscow, Nauka, 1986. 288 p. (in Russian).
  2. Levitan B. M. Obratnye zadachi Shturma – Liuvillya i ikh prilozheniya [Inverse Sturm – Liouville Problems and Their Applications]. Moscow, Nauka, 1984. 240 p. (in Russian).
  3. Kravchenko V. V. Direct and Inverse Sturm – Liouville Problems. A Method of Solution. Frontiers in Mathematics. Cham, Birkhauser, 2020. 154 p. https://doi.org/10.1007/978-3-030-47849-0
  4. Romanov V. G. Obratnye zadachi matematicheskoy fiziki [Inverse Problems of Mathematical Physics]. Moscow, Nauka, 1984. 262 p. (in Russian).
  5. Yakhno V. G. Obratnye koeffitsientnye zadachi dlya differentsial’nykh uravneniy uprugosti [Inverse Coefficient Problems for Differential Elasticity Equations]. Novosibirsk, Nauka, 1990. 304 p. (in Russian).
  6. Bui H. D. Inverse Problems in the Mechanic of Materials: An Introduction. Boca Raton, FL, CRC Press, 1994, 224 p.
  7. Isakov V. Inverse Problems for Partial Differential Equations. Applied Mathematical Sciences, vol. 127. Cham, Springer, 2017. 406 p. https://doi.org/10.1007/978-3-319-51658-5
  8. Bonnet M., Constantinescu A. Inverse problems in elasticity. Inverse Problem, 2005, vol. 21, pp. 1–50. https://doi.org/10.1088/0266-5611/21/2/R01
  9. Yurko V. A. Vvedenie v teoriyu obratnykh spektral’nykh zadach [Introduction to the Theory of Inverse Spectral Problems]. Moscow, Fizmatlit, 2007. 384 p. (in Russian).
  10. Bal G. Introduction to Inverse Problems. New York, Columbia University, 2012. 205 p.
  11. Neto F. D. M., Neto A. J. S. An Introduction to Inverse Problems with Applications. Berlin, Springer, 2013. 255 p.
  12. Kabanikhin S. I. Obratnye i nekorrektnye zadachi [Inverse and Ill-posed Problems]. Novosibirsk, Publ. House SB RAS, 2018. 512 p. (in Russian).
  13. Tikhonov A. N., Goncharskiy A. V., Stepanov V. V., Yagola A. G. Chislennye metody resheniya nekorrektnykh zadach [Numerical Methods for Solving Ill-posed Problems]. Moscow, Nauka, 1990. 230 p. (in Russian).
  14. Samarskiy A. A., Vabishchevich P. N. Chislennye metody resheniya obratnykh zadach matematicheskoy fiziki [Numerical Methods for Solving Inverse Problems of Mathematical Physics]. Moscow, Editorial URSS, 2004. 480 p. (in Russian).
  15. Vatulyan A. O. Koeffitsientnye obratnye zadachi mekhaniki [Coefficient Inverse Problems of Mechanics]. Moscow, Fizmatlit, 2019. 272 p. (in Russian).
  16. Vatulyan A. O., Nesterov S. A. Koeffitsientnye obratnye zadachi termomekhaniki [Coefficient Inverse Problems of Thermomechanics]. Rostov-on-Don, Taganrog, Southern Federal University Publ., 2022. 176 p. (in Russian).
  17. Bondarenko A. N., Bugueva T. V., Dedok V. A. Inverse problems of anomalous diffusion theory: An artificial neural network approach. Journal of Applied and Industrial Mathematics, 2016, vol. 10, iss. 3, pp. 311–321. https://doi.org/10.1134/S1990478916030017, EDN: WVWMLV
  18. Bogachev I. V., Vatulyan A. O., Dudarev V. V. On the method of property identification of multilayer soft biological tissues. Russian Journal of Biomechanics, 2013, vol. 17, iss. 3. pp. 37–48 (in Russian). EDN: RDMLID
  19. Sinkus R., Lorenzen J., Schrader D., Lorenzen M., Dargatz M., Holz D. High-resolution tensor MR elastography for breast tumour detection. Physics in Medicine & Biology, 2000, vol. 45, iss. 6, pp. 1649–1664. https://doi.org/10.1088/0031-9155/45/6/317
  20. Manduca A., Oliphant T. E., Dresner M. A., Mahowald J. L., Kruse S. A., Amromin E., Felmlee J. P., Greenleaf J. F., Ehman R. L. Magnetic resonance elastography: Non-invasive mapping of tissue elasticity. Medical Image Analysis, 2001, vol. 5, iss. 4, pp. 237–254. https://doi.org/10.1016/s1361-8415(00)00039-6
  21. Sarvazyan A. P. Low-frequency acoustic characteristics of biological tissues. Mekhanika polimerov [Polymer Mechanics], 1975, iss. 4, pp. 691–695. (in Russian).
  22. Sarvazyan A., Goukassian D., Maevsky G. Elasticity imaging as a new modality of medical imaging for cancer detection. In: Proceedings of an International Workshop on Interaction of Ultrasound with Biological Media. Valenciennes, France, 1994, pp. 69–81.
  23. Sarvazyan A. P., Rudenko O. V., Swanson S. D., Fowlkes J. B., Emelianov S. Y. Shear wave elasticity imaging: A new ultrasonic technology of medical diagnostics. Ultrasound in Medicine & Biology, 1998, vol. 24, iss. 9, pp. 1419–1435. https://doi.org/10.1016/S0301-5629(98)00110-0, EDN: LFDAJV
  24. Arani A., Manduca A., Ehman R. L., Huston III J. Harnessing brain waves: A review of brain magnetic resonance elastography for clinicians and scientists entering the field. The British Journal of Radiology, 2021, vol. 94, art. 20200265. https://doi.org/10.1259/bjr.20200265
  25. Perkowski Z., Czabak M. Description of behaviour of timber-concrete composite beams including interlayer slip, uplift, and long-term effects: Formulation of the model and coefficient inverse problem. Engineering Structures, 2019, vol. 194, pp. 230–250. https://doi.org/10.1016/j.engstruct.2019.05.058
  26. Dudarev V. V., Vatulyan A. O., Mnukhin R. M., Nedin R. D. Concerning an approach to identifying the Lame parameters of an elastic functionally graded cylinder. Mathematical Methods in the Applied Sciences, 2020, vol. 43, iss. 11, pp. 6861–6870. https://doi.org/10.1002/mma.6428
  27. Vatulyan A. O., Dudarev V. V., Mnukhin R. M. Identification of characteristics of a functionally graded isotropic cylinder. International Journal of Mechanics and Materials in Design, 2021, vol. 17, iss. 2, pp. 321–332. https://doi.org/10.1007/s10999-020-09527-5
  28. Vatulyan A. O., Yurov V. O. On the reconstruction of material properties of a radially inhomogeneous cylindrical waveguide. Mathematical Methods in the Applied Sciences, 2021, vol. 44, iss. 6, pp. 4756–4769. https://doi.org/10.1002/mma.7067
  29. Vatulyan A. O., Yurov V. O. On the determination of the mechanical characteristics of rod elements made of functionally graded materials. Mechanics of Solids, 2020, vol. 55, iss. 6, pp. 907–917. https://doi.org/10.3103/S0025654420660036, EDN: FRQJDG
  30. Vatulyan A. O. Obratnye zadachi v mekhanike deformiruemogo tverdogo tela [Inverse Problems in the Mechanics of Deformable Solids]. Moscow, Fizmatlit, 2007. 223 p. (in Russian). EDN: UGLKIJ
Received: 
26.11.2023
Accepted: 
28.12.2023
Published: 
31.05.2024