Izvestiya of Saratov University.

Mathematics. Mechanics. Informatics

ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


For citation:

Murashkin E. V., Radayev Y. N. Two-dimensional Nye figures for hemitropic micropolar elastic solids. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2024, vol. 24, iss. 1, pp. 109-122. DOI: 10.18500/1816-9791-2024-24-1-109-122, EDN: FKFRHA

This is an open access article distributed under the terms of Creative Commons Attribution 4.0 International License (CC-BY 4.0).
Published online: 
01.03.2024
Full text:
(downloads: 296)
Language: 
Russian
Heading: 
Article type: 
Article
UDC: 
539.3
EDN: 
FKFRHA

Two-dimensional Nye figures for hemitropic micropolar elastic solids

Autors: 
Murashkin Evgenii Valeryevich, Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
Radayev Yuri Nickolaevich, Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
Abstract: 

The paper is devoted to a wide range of problems related to the two-dimensional Nye figures for micropolar continua. The method of two-dimensional matrix representation of fourth-rank tensors is well known from monographs on crystallography. Such representations are used to simplify tensor notation of the equations of anisotropic solids. This method allows us to represent the asymmetric constitutive tensors and pseudotensors of the fourth, third and second ranks in the form of specific two-dimensional figures. The Nye figures for the constitutive hemitropic tensors of the fourth and second ranks are given. The matrix form of the constitutive equations of a hemitropic micropolar solid in the athermal case is obtained. The transformation of the pseudotensor governing equations of the micropolar theory to a formulation in terms of absolute tensors is carried out via the  pseudoscalar units and their integer powers. The study is carried out in terms of absolute tensors in a Cartesian rectangular coordinate system.

Acknowledgments: 
This work was supported by the Russian Science Foundation (project No. 23-21-00262 “Coupled thermomechanics of micropolar semi-isotropic media”).
References: 
  1. Neuber H. Uber Probleme der Spannungskonzentration im Cosserat – Korper. Acta Mechanica, 1966, vol. 2, pp. 48–69. https://doi.org/10.1007/BF01176729
  2. Neuber H. On the general solution of linear-elastic problems in isotropic and anisotropic Cosserat continua. In: Gortler H. (ed.) Applied Mechanics. Berlin, Heidelberg, Springer, 1966, pp. 153–158. https://doi.org/10.1007/978-3-662-29364-5_16
  3. Nowacki W. Theory of Micropolar Elasticity. Berlin, Springer, 1972. 285 р. https://doi.org/10.1007/978-3-7091-2720-9
  4. Nowacki W. Theory of Asymmetric Elasticity. Oxford, Pergamon Press, 1986. 383 p.
  5. Dyszlewicz J. Micropolar Theory of Elasticity. Berlin, Heidelberg, Springer, 2004. 345 p. https://doi.org/10.1007/978-3-540-45286-7
  6. Murashkin E. V., Radayev Yu. N. Covariantly constant tensors in Euclid spaces. Elements of the theory. Vestnik I. Yakovlev Chuvach State Pedagogical University. Series: Mechanics of a Limit State, 2022, iss. 2 (52), pp. 106–117 (in Russian). https://doi.org/10.37972/chgpu.2022.52.2.012, EDN: FQVGRK
  7. Murashkin E. V., Radayev Yu. N. Covariantly constant tensors in Euclid spaces. Applications to continuum mechanics. Vestnik I. Yakovlev Chuvach State Pedagogical University. Series: Mechanics of a Limit State, 2022, iss. 2 (52), pp. 118–127 (in Russian). https://doi.org/10.37972/chgpu.2022.52.2.013, EDN: ESTJSA
  8. Radayev Yu. N. The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2018, vol. 22, iss. 3, pp. 504–517 (in Russian). https://doi.org/10.14498/vsgtu1635, EDN: YOYJQD
  9. Murashkin E. V., Radayev Yu. N. On two base natural forms of asymmetric force and couple stress tensors of potential in mechanics of hemitropic solids. Vestnik I. Yakovlev Chuvach State Pedagogical University. Series: Mechanics of a Limit State, 2022, iss. 3 (53), pp. 86–100 (in Russian). https://doi.org/10.37972/chgpu.2022.53.3.010, EDN: YOEHQV
  10. Murashkin E. V., Radayev Yu. N. Reducing natural forms of hemitropic energy potentials to conventional ones. Vestnik I. Yakovlev Chuvach State Pedagogical University. Series: Mechanics of a Limit State, 2022, iss. 4 (54), pp. 108–115. (in Russian). https://doi.org/10.37972/chgpu.2022.54.4.009, EDN: DTZTJY
  11. Schouten J. A. Tensor Analysis for Physicist. Oxford, Clarendon Press, 1951. 434 p. (Russ. ed.: Moscow, Nauka, 1965. 456 p.).
  12. Sokolnikoff I. S. Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua. New York, John Wiley & Sons Inc., 1964. 361 p. (Russ. ed.: Moscow, Nauka, 1971. 376 p.).
  13. Synge J. L., Schild A. Tensor Calculus. New York, Dover Publication Inc., 1978. 324 p.
  14. Das A. J. Tensors: The Mathematics of Relativity Theory and Continuum Mechanics. New York, Springer, 2007. 290 p. https://doi.org/10.1007/978-0-387-69469-6
  15. Gurevich G. B. Foundations of the Theory of Algebraic Invariants. Groningen, Noordhoff, 1964. 429 p. (Russ. ed.: Moscow, Leningrad, OGIZ, GITTL, 1948. 408 p.).
  16. Veblen O., Thomas T. Y. Extensions of relative tensors. Transactions of the American Mathematical Society, 1924, vol. 26, iss. 3, pp. 373–377. https://doi.org/10.2307/1989146
  17. Veblen O. Invariants of Quadratic Differential Forms. Cambridge, Cambridge University Press, 1927. 114 p. (Russ. ed.: Moscow, IIL, 1948. 140 p.).
  18. Radayev Yu. N., Murashkin E. V. Pseudotensor formulation of the mechanics of hemitropic micropolar media. Problems of Strength and Plasticity, 2020, vol. 82, iss. 4, pp. 399–412 (in Russian). https://doi.org/10.32326/1814-9146-2020-82-4-399-412, EDN: TODIFV
  19. Murashkin E. V., Radayev Yu. N. On a micropolar theory of growing solids. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2020, vol. 24, iss. 3, pp. 424–444. https://doi.org/10.14498/vsgtu1792, EDN: TYGBER
  20. Kovalev V. A., Murashkin E. V., Radayev Yu. N. On the Neuber theory of micropolar elasticity. A pseudotensor formulation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2020, vol. 24, iss. 4, pp. 752–761. https://doi.org/10.14498/vsgtu1799, EDN: IVEASC
  21. Jeffreys H. Cartesian Tensors. Cambridge, Cambridge University Press, 1931. 101 p.
  22. Nye J. F. Physical Properties of Crystals, Their Representation by Tensors and Matrices. Oxford, Clarendon Press, 1957. 322 p.
  23. Wooster W. A. Experimental Crystal Physics. Oxford, Clarendon Press, 1957. 116 p.
  24. Voigt W. Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik). Fachmedien, Wiesbaden, Springer, 1966. 979 p.
  25. Standards on Piezoelectric Crystals. Proceedings of the I.R.E. New York, IRE, 1949. 18 p.
  26. Zheng Q. S., Spencer A. J. M. On the canonical representations for Kronecker powers of orthogonal tensors with application to material symmetry problems. International Journal of Engineering Science, 1993, vol. 31, iss. 4. pp. 617–435. https://doi.org/10.1016/0020-7225(93)90054-X
  27. Rosenfeld B. A. Mnogomernye prostranstva [Multidimensional Spaces]. Moscow, Nauka, 1966. 648 p. (in Russian).
  28. Radayev Yu. N. Tensors with constant components in the constitutive equations of hemitropic micropolar solids. Mechanics of Solids, 2023, vol. 58, iss. 5, pp. 1517–1527. https://doi.org/10.3103/S0025654423700206
  29. Murashkin E. V., Radayev Y. N. A negative weight pseudotensor formulation of coupled hemitropic thermoelasticity. Lobachevskii Journal of Mathematics, 2023, vol. 44, iss. 6, pp. 2440–2449. https://doi.org/10.1134/S1995080223060392, EDN: PINYDI
  30. Radayev Yu. N., Murashkin E. V. Generalized pseudotensor formulations of the Stokes’ integral theorem. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2022, vol. 22, iss. 2, pp. 205–215. https://doi.org/10.18500/1816-9791-2022-22-2-205-215, EDN: VURXND
  31. Murashkin E. V., Radayev Yu. N. On a ordering of area tensor elements orientations in a micropolar continuum immersed in an external plane space. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2021, vol. 25, iss. 4, pp. 776–786 (in Russian). https://doi.org/10.14498/vsgtu1883, EDN: ZKIAAJ
  32. Murashkin E. V., Radaev Y. N. On theory of oriented tensor elements of area for a micropolar continuum immersed in an external plane space. Mechanics of Solids, 2022, vol. 57, iss. 2, pp. 205–213. https://doi.org/10.3103/s0025654422020108, EDN: SNKUNC
  33. Murashkin E. V., Radayev Yu. N. Algebraic algorithm for the systematic reduction of one-point pseudotensors to absolute tensors. Vestnik I. Yakovlev Chuvach State Pedagogical University. Series: Mechanics of a Limit State, 2022, iss. 1 (51), pp. 17–26 (in Russian). https://doi.org/10.37972/chgpu.2022.51.1.002, EDN: ZJWFGT
  34. Murashkin E. V., Radayev Yu. N. An algebraic algorithm of pseudotensors weights eliminating and recovering. Mechanics of Solids, 2022, vol. 57, iss. 6, pp. 1416–1423. https://doi.org/10.3103/s0025654422060085, EDN: CSZGEL
  35. Murashkin E. V., Radayev Yu. N. On the constitutive pseudoscalars of hemitropic micropolar media in inverse coordinate frames. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 2021, vol. 25, iss. 3, pp. 457–474 (in Russian). https://doi.org/10.14498/vsgtu1870, EDN: XYERLC
Received: 
18.08.2023
Accepted: 
11.09.2023
Published: 
01.03.2024