Известия Саратовского университета. Новая серия.
ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


базис Рисса

Система Дирака с недифференцируемым потенциалом и антипериодическими краевыми условиями

В работе рассматривается системаДирака с антипериодическими краевыми условиями и с комлекснозначным непрерывным потенциалом. Предложен новый метод исследования спектральных свойств этой краевой задачи. Метод базируется на формулах типа операторов преобразования и является элементарным и простым. С его помощью получена уточненная асимптотика собственных значений и доказано, что система собственных и присоединенных функций образует базис Рисса со скобками в пространстве квадратично суммируемых двумерных вектор-функций, так как собственные значения могут быть кратными.

Уточненные асимптотические формулы для собственных значений и собственных функций системы Дирака с недифференцируемым потенциалом

 В работе изучается система Дирака с недиффернцируемым потенциалом. Устанавливаются асимптотические формулы для собственных значений (в том числе и уточненные) и собственных функций. В качестве приложения получается теорема П. Джакова и Б. С. Митягина о базисах Рисса со скобками. 

Базисы Рисса из собственных и присоединенных функций интегральных операторов с разрывными ядрами, содержащими инволюцию

При предположении существования обратного к интегральному оператору, ядро которого терпит разрывы на диагоналях единичного квадрата, доказана базисность Рисса его собственных и присоединенных функций в пространстве L2[0, 1].

О базисах Рисса из собственных функций дифференциального оператора второго порядка с инволюцией и интегральными краевыми условиями

Для дифференциального оператора второго порядка с инволюцией в производных и интегральными краевыми условиями доказана базисность Рисса со скобками собственных и присоединенных функций. Для доказательства осуществляется сведение спектральной задачи исходного оператора к спектральной задаче для оператора первого порядка в пространстве вектор-функций размерности четыре,не содержащего инволюцию.