Известия Саратовского университета. Новая серия.
ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


спектральные разложения

Уравнения равновесия оболочек в координатах общего вида

Построена математическая модель упругих однородных оболочек в рамках кинематики типа Рейсснера–Миндлина. На основе прямых (бескоординатных) методов тензорного исчисления получены уравнения равновесия в перемещениях в произвольной (не обязательно ортогональной) системе координат, учитывающие асимметрию расположения лицевых поверхностей.

Нестационарные колебания растущей круговой цилиндрической оболочки

В работе исследованы вынужденные малые колебания растущей по толщине круговой цилиндрической оболочки с жестко закрепленными краями в рамках гипотез технической теории оболочек Кирхгофа–Лява. Материал предполагается упругим и изотропным, а ее толщина непрерывно увеличивается в результате притока материала извне. В процессе роста положение срединной поверхности не изменяется, т.е. наращивание оболочки происходит симметрично на обеих лицевых поверхностях. 

Оценки скорости сходимости и равносходимости спектральных разложений обыкновенных дифференциальных операторов

Настоящий обзор содержит анализ результатов, полученных В. А. Ильиным и его учениками, по вопросу оценки скорости сходимости и равносходимости с тригонометрическим рядом Фурье спектральных разложений функций по корневым функциям линейных обыкновенных дифференциальных операторов как самосопряженных, так и несамосопряженных, заданных на конечном отрезке числовой прямой. Приведена первая теорема В. А. Ильина о равносходимости спектральных разложений для дифференциального оператора произвольного порядка.

Метод конечных интегральных преобразований — обобщение классической процедуры разложения по собственным вектор-функциям

Показано, что структурный алгоритм метода конечных интегральных преобразований является обобщением классической процедуры разложения по собственным вектор-функциям. Рассматриваются начально-краевые задачи, описываемые гиперболической системой линейных дифференциальных уравнений в частных производных второго порядка. Доказывается, что в общем случае несамосопряженного оператора решение путем разложения по собственным вектор-функциям возможно лишь в результате применения биортогональных конечных интегральных преобразований.