Известия Саратовского университета. Новая серия.
ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


формальное решение

Классическое и обобщенное решения смешанной задачи для однородного волнового уравнения с суммируемым потенциалом. Часть I. Классическое решение смешанной задачи

Резольвентным подходом и использованием идеи А. Н. Крылова об ускорении сходимости рядов Фурье исследуются свойства формального решения смешанной задачи для однородного волнового уравнения с суммируемым потенциалом и нулевой начальной функцией. Такой метод позволяет получать глубокие результаты о сходимости формального ряда с произвольными граничными условиями и без завышения требований гладкости исходных данных.

Смешанная задача для однородного волнового уравнения с ненулевой начальной скоростью с суммируемым потенциалом

Для смешанной задачи, определяемой волновым уравнением с суммируемым потенциалом, однопорядковыми граничными условиями с производной и нулевым начальным положением, исследуются свойства формального решения по методу Фурье в зависимости от гладкости начальной скорости u′t(x, 0) = ψ(x). В основе исследования — идея А. Н. Крылова об ускорении сходимости рядов Фурье и метод контурного интегрирования резольвенты оператора соответствующей спектральной задачи.

О классическом решении одной смешанной задачи для волнового уравнения

В статье методом Фурье дается классическое решение смешанной задачи для волнового уравнения с комплексным потенциалом при минимальных условиях гладкости начальных данных. Используется резольвентный подход, состоящий в привлечении вформальном решении метода Коши – Пуанкаре интегрирования резольвенты соответствующей спектральной задачи по спектральному параметру, не требующий никакой информации о собственных и присоединенных функциях и использующий лишь главную часть асимптотики собственных значений. Существенно используется прием А. Н.

Обоснование метода Фурье в смешанной задаче для волнового уравнения с ненулевой начальной скоростью

В статье методом контурного интегрирования резольвенты оператора, порожденного спектральной задачей, соответствующей смешанной задаче для волнового уравнения с комплексным потенциалом, дается обоснование метода Фурье двух смешанных задач с нулевой начальной функцией и ненулевой начальной скоростью.

Смешанная задача для волнового уравнения с ненулевой начальной скоростью

Исследуется смешанная задача для волнового уравнения с непрерывным комплексным потенциалом в случае ненулевой начальной скорости ut(x, 0) = ψ(x) и двух типов двухточечных граничных условий: концы закреплены и когда каждое из граничных условий содержит производную по x. Резольвентным подходом с использованием рекомендаций А. Н. Крылова по ускорению сходимости рядов Фурье получается методом Фурье классическое решение в случае ψ(x) ∈ W1 2 [0, 1] (уравнение удовлетворяется почти всюду).