Известия Саратовского университета. Новая серия.
ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


группа преобразований

Нередуктивные пространства с эквиаффинными связностями ненулевой кривизны

Объект данного исследования - структуры на однородных пространствах. Одной из важных проблем геометрии является задача об установлении связей между кривизной и структурой многообразия. В общем случае задача исследования многообразий различных типов является достаточно сложной. Поэтому естественно рассматривать данную задачу в более узком классе нередуктивных однородных пространств.

О геометрии трехмерных псевдоримановых однородных пространств. II

Одной из важных проблем геометрии является задача об установлении связей между кривизной и топологической структурой многообразия. В общем случае задача исследования многообразий различных типов является достаточно сложной. Поэтому естественно рассматривать данную задачу в более узком классе псевдоримановых многообразий, например в классе однородных псевдоримановых многообразий. Настоящая статья является продолжением одноименной работы (части 1).

Об одной форме первой вариации интегрального функционала действия по растущей области

В работе рассматриваются полевые теории механики и физики континуума, основой которых выступает принцип наименьшего действия. Действие в формулировках указанного принципа представляет собой интегральный функционал, варьирование которого осуществляется по физическим полевым переменным при неварьируемых пространственно-временных координатах. Однако теория вариационных симметрий действия и само понятие об инвариантных вариационных функционалах требует привлечения более широких способов варьирования, включающих трансформацию области интегрирования, т.е.

Трехмерные однородные пространства, не допускающие инвариантных связностей

Если существует хотя бы одна инвариантная аффинная связность на однородном пространстве, то пространство является изотропно-точным, однако обратное неверно. Возможность построения на однородном пространстве инвариантной аффинной связности изучал П. К. Рашевский, к построениям П. К. Рашевского несколько позже пришел К. Номидзу. Цель данной работы — изучить, в каких случаях невозможно построение инвариантной аффинной связности на трехмерном изотропно-точном однородном пространстве, и классифицировать пространства, не допускающие инвариантных связностей.

Связности ненулевой кривизны на трехмерных нередуктивных пространствах

В каком случае однородное пространство допускает инвариантную аффинную связность? Если существует хотя бы одна инвариантная связность, то пространство является изотропно-точным, но обратное неверно. Если однородное пространство является редуктивным, то оно всегда допускает инвариантную связность. Целью данной работы является описание трехмерных нередуктивных однородных пространств, допускающих аффинные связности только ненулевой кривизны, а также самих связностей, их тензоров кривизны и кручения.

Нередуктивные однородные пространства, не допускающие нормальных связностей

Целью данной работы является классификация трехмерных нередуктивных однородных пространств, недопускающих нормальных связностей, самих связностей, их тензоров кривизны, кручения и алгебр голономии.Объектом исследования являются нередуктивные пространства и связности на них.Определены основные понятия: изотропно-точная пара, редуктивное пространство, аффинная связность, тензор кручения, тензор кривизны, алгебра голономии, нормальная связность. Локальное изучение однородных пространств равносильно исследованию пар, состоящих из алгебры Ли и ее подалгебры.

О геометрии трехмерных псевдоримановых однородных пространств. I

Одной из важных проблем геометрии является задача об установлении связей между кривизной и топологической структурой многообразия. В общем случае задача исследования многообразий различных типов является достаточно сложной. Поэтому естественно рассматривать данную задачу в более узком классе псевдоримановых многообразий, например, в классе однородных псевдоримановых многообразий.