Известия Саратовского университета. Новая серия.
ISSN 1816-9791 (Print)
ISSN 2541-9005 (Online)


собственные и присоединенные функции

Интегральный оператор с ядром, имеющим скачки на ломаных линиях

  В настоящей работе изучается равносходимость разложений в тригонометрические ряды Фурье и по собственным и присоединенным функциям интегрального оператора, ядро которого терпит скачки на сторонах квадрата, вписанного в единичный квадрат. 

Аналог теоремы Жордана–Дирихле для интегрального оператора с ядром, имеющим скачки на ломаных линиях

Найдены достаточные условия (условия типа Жордана–Дирихле) разложения функции f(x) в равномерно сходящийся ряд по собственным и присоединенным функциям интегрального оператора, ядро которого терпит скачки на сторонах квадрата, вписанного в единичный квадрат. Как известно, для такого разложения необходимо, чтобы f(x) была непрерывна и принадлежала замыканию области значений интегрального оператора. Оказывается, если f(x) к тому жефункция ограниченной вариации, эти условия являются и достаточными.

О сходимости средних Рисса разложений по собственным и присоединенным функциям интегрального оператора с ядром, имеющим скачки на ломанных линиях

В настоящей работе найдены необходимые и достаточные условия равномерной сходимости обобщенных средних Рисса разложений по собственным и присоединенным функциям(с.п.ф.) интегрального оператора, ядро которого терпит скачки на сторонах квадрата, вписанного в единичный квадрат. 

Кратная неполнота системы собственных функций одного класса пучков дифференциальных операторов

Рассматривается класс пучков обыкновенных дифференциальных операторов n-гопорядка с постоянными коэффициентами. Предполагается,что корни характеристического уравнения пучков этого класса лежат на одной прямой, проходящей через начало координат. Главное предположение состоит в том, что порождающие функции для системы собственных и присоединенных функций являются линейными комбинациями экспонент.

О кратной полноте корневых функций пучков дифференциальных операторов с постоянными коэффициентами и распадающимися краевыми условиями

В пространстве суммируемых с квадратом функций на отрезке [0,1] рассматривается класс полиномиальных пучков обыкновенных дифференциальных операторов n-го порядка. Коэффициенты дифференциального выражения предполагаются постоянными. Краевые условия являются распадающимися и двухточечными в концах 0 и 1 (l краевых условий берутся только в точке 0, а остальные n − l — в точке 1). Дифференциальное выражение и краевые формы предполагаются однородными, т.е. содержат только главные части.

Спектральный метод Ильина установления свойств базисности и равномерной сходимости биортогональных разложений на конечном интервале

В работе обсуждаются основы спектрального метода В. А. Ильина на примере простого дифференциального оператора второго порядка на отрезке числовой прямой. Сформулирована первая теорема Ильина о безусловной базисности. Приведено ее подробное доказательство. Прослежена цепочка обобщений этой теоремы и сформулирована недавно установленная теорема о безусловной базисности для дифференциальных операторов с общими—интегральными—краевыми условиями.